A FINAL REPORT ON ENVIRONMENTAL MONITORING IN THE VICINITY OF

VonRoll WTI Incinerator Facility, East Liverpool, Ohio

Prepared for:

Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20640

Prepared by:

Raj Singhvi, and Joseph P. Lafornara Environmental Response Team Center U.S. Environmental Protection Agency Edison, NJ 08837

Richard Scheffe, Joann Rice, Tim Hanley and Nealson Watkins Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711

In conjunction with:
Jeffrey Bradstreet, and Yash Mehra
Lockheed Martin/REAC
Edison, NJ 08837

May 23, 2003

TABLE OF CONTENTS

	Page No.
Executive Summary	1
Introduction	3
Air sampling and Analysis Methods	4
Soil sampling and Analysis Methods	7
Air Sampling Events	7
Soil Sampling Events	9
Meteorological Data Monitoring	9
Quality Assurance	10
Results and Discussion for Ambient Air	11
Results and Discussion for Soil Samples	13
Results and Discussion for Meteorological data	13
Conclusions	14
References	15
List of Tables	ï
List of Figures	iii
Appendixes	vi

List of Tables

Table No.	Description	Page No
1	Ambient Air Sampling - Sampling Rounds #1 and 2	16
2	Ambient Air Sampling - Sampling Round #3	18
3	Ambient Air Sampling - Sampling Round #4	19
4	Ambient Air Sampling - Sampling Round #5	21
5	Soil Sampling - Sampling Round #1	26
6	Soil Sampling - Sampling Round #4	27
7	Summary table for VOCs detected in air - Round #1	28
8	Summary table for Metals detected in air - Round #1	29
9	Summary table for Inorganic Acids detected in air - Round #1	30
10	Summary table for VOCs detected in air - Round #2	31
11	Summary table for Metals detected in air - Round #2	32
12	Summary table for Inorganic Acids detected in air - Round #2	33
13	Summary table for Metals detected in air - Round #3	34
14	Summary table for Dioxins detected in air - Round #4	35
15	Summary table for PAHs detected in air - Round #4	37
16	Summary table for Metals detected in air - Round #4	38
17	Summary table for VOCs detected in air - Round #4	41
18	Summary table for Total Dioxin TEQs in air - Round #4	42
19	Literature Values, Average Total Toxicity Equivalents for Dioxins	43
20	Chemical Composition of PM _{2.5} Samples	44
21	Summary table for Metals detected in air - Round #5	45
22	Summary table for VOCs detected in air - Round #5	55
23	Summary table for Metals in Soil - Round #1	56
24	Summary table for Dioxins detected in Soil - Round #1	57
25	Summary table for Metals in Soil - Round #4	58
26	Summary table for Dioxins detected in Soil - Round #4	59

List of Figures

Figure No.	ure No. Description	
1	Previous Air Sampling Locations: East Liverpool and Vicinity	60
2	Air Sampling Locations: WTI Incinerator Site	61
3	Soil Sampling Locations: WTI Incinerator Site	62
4	Air Sampling Locations; East Liverpool, Ohio; October 2000	63
5	Air Sampling Location EL-001; Sampling Rounds #1-2; Elementary School at SW Corner	64
6	Air Sampling Location EL-002; Sampling Rounds #1-3; Elementary School at Entrance	65
7	Air Sampling Location EL-003; Sampling Rounds #1-3; Backyard of E House on Etruria Street	66
8	Air Sampling Location EL-004: Sampling Rounds #1-3; Side yard of C House on Etruria Street	67
9	Air Sampling Location EL-005; Sampling Rounds #1-3; Elementary School Playground (Snack Shack)	68
10	Air Sampling Location EL-006; Sampling Rounds #1-3; Bank of Ohio River across from 1911 Ohio Avenue	69
11	Air Sampling Locations; East Liverpool, Ohio; November 2000	70
12	Air Sampling Location EL-001: Sampling Round #3:	71
	Air Sampling Location WTI-1; Sampling Rounds #4 and 5; Roof of Administration Building	
13	Air Sampling Location WTI-2; Sampling Rounds #4 and 5; Water Treatment Plant	72
14	Air Sampling Location WTI-3; Sampling Rounds #4 and 5; West Virginia DEP Site	73
15	Air Sampling Location WTI-4; Sampling Rounds #4 and 5; Roof of East Liverpool City Hall	74
16	Air Sampling Location WTI-5; Sampling Rounds #4 and 5; End of Walter Street (North Bank of Ohio River)	75
17	Air Sampling Locations; East Liverpool, Ohio; December 2000	76
18	Air Sampling Location WTI-2A; Sampling Round # 5: PM ₁₀ Location at Water Treatment Plant	77
19	Air Sampling Location WTI-6; Sampling Round #5; Port Authority Parking Area (Columbiana County)	78
20	Air Sampling Location WTI-7; Sampling Round #5; West End of Ohio Avenue	79
21	Air Sampling Location WTI-8; Sampling Round #5; Route 39 at Ohio/Pennsylvania Monument	80
22	Air Sampling Location WTI-9; Sampling Round #5; Route 39E at Entrance, Pennsylvania	81

List of Figures (continued)

Figure No.	Description	Page No
23	Air Sampling Location WTI-10; Sampling Round #5; East End of S. H. Bell	82
24	Air Sampling Location WTI-11; Sampling Round #5; Cause Avenue at East end of S. H. Bell	83
25	Soil Sampling Locations; East Liverpool, Ohio; October 2000	84
26	Soil Sampling Location EES-1; Sampling Round #1; SW Corner of School	85
27	Soil Sampling Location EES-2; Sampling Round #1; Elementary School Entrance	86
28	Soil Sampling Location EES-3; Sampling Round #1; SE Corner of Elementary School	87
29	Soil Sampling Location EES-4; Sampling Round #1; Elementary School Playground Swing Set	88
30	Soil Sampling Location EES-5; Sampling Round #1; Elementary School Playground	89
31	Soil Sampling Location EES-6; Sampling Round #1; Elementary School Bottom of Slide	90
32	Soil Sampling Location EES-7; Sampling Round #1; W. Side Snack Shack	91
33	Soil Sampling Location EES-8; Sampling Round #1; Home Base - Elementary School Playground	92
34	Soil Sampling Location EES-9; Sampling Round #1; Center Field - Elementary School Playground	93
35	Soil Sampling Location EES-10; Sampling Round #1; North Bank of Ohio River at Ohio Avenue	94
36	Soil Sampling Locations; East Liverpool, Ohio; November 2000	95
37	Soil Sampling Location SE-1; Sampling Round 4; SE Corner of School	96
38	Soil Sampling Location SE-2; Sampling Round 4; SW Corner of School	97
39	Soil Sampling Location SE-3; Sampling Round 4; Front of School	98
40	Soil Sampling Location SE-4; Sampling Round 4; School Entrance	99
41	Soil Sampling Location WTI-5; Sampling Round 4; End of Walter Stree	t 100
42	Chemical Composition of PM _{2.5} Samples	101
43	Wind Rose, Sampling Round #2, Event 1, Sampling Location EL-002	103
44	Wind Rose, Sampling Round #2, Event 1, Sampling Location EL-002	104
45	Wind Rose, Sampling Round #2, Event 2, Sampling Location EL-002	105
46	Wind Rose, Sampling Round #4, Event 1, Sampling Location WTI-1	106
47	Wind Rose, Sampling Round #4, Event 2, Sampling Location WTI-1	107
48	Wind Rose, Sampling Round #4, Event 3, Sampling Location WTI-1	108
49	Wind Rose, Sampling Round #4, Event 4, Sampling Location WTI-1	109
50	Wind Rose, Sampling Round #2, Event 1, Sampling Location WTI-2	110

List of Figures (continued)

Figure No.	Description	Page No.
51	Wind Rose, Sampling Round #2, Event 2, Sampling Location WTI-2	111
52	Wind Rose, Sampling Round #2, Event 3, Sampling Location WTI-2	112
53	Wind Rose, Sampling Round #4, Event 1, Sampling Location WTI-2	113
54	Wind Rose, Sampling Round #5, Event 1, Sampling Location WTI-2	114
55	Wind Rose, Sampling Round #5, Event 2, Sampling Location WTI-2	115
56	Wind Rose, Sampling Round #5, Event 3, Sampling Location WTI-2	116
57	Wind Rose, Sampling Round #5, Event 4, Sampling Location WTI-2	117
58	Wind Rose, Sampling Round #5, Event 5, Sampling Location WTI-2	118
59	Wind Rose, Sampling Round #5, Event 6, Sampling Location WTI-2	119
60	Wind Rose, Sampling Round #5, Event 7, Sampling Location WTI-2	120
61	Wind Rose, Sampling Round #5, Event 8, Sampling Location WTI-2	121
62	Wind Rose, Sampling Round #5, Event 9, Sampling Location WTI-2	122
63	Wind Rose, Sampling Round #5, Event 10, Sampling Location WTI-2	123
64	Wind Rose, Sampling Round #5, Event 11, Sampling Location WTI-2	124

Appendices

Appendix

Description

A Agency for Toxic Substances and Disease Registry Correspondence; 1 November 2000 through 22 March 2001

Executive Summary

On October 20, 2000, the National Ombudsman released a preliminary report regarding the operations of the Von Roll Waste Technologies Industries (WTI) East Liverpool, OH hazardous waste incinerator. He questioned the results of the original trial burn and ambient air monitoring conducted in the East Liverpool, OH / Chester, WV area. He recommended that the facility halt the feeding of waste to the incinerator for a period of no less than six months, and make preparations for a retest of the trial burn, or a new trial burn in 2001, as a necessary step in the consideration by the Ohio Environmental Protection Agency (Ohio EPA) of the RCRA permit renewal for the facility. He also recommended that a new Addendum to the risk assessment for the WTI facility be prepared using the data from the new trial burn.

Subsequently, the United States Environmental Protection Agency (US EPA) conducted five rounds of ambient air sampling starting October 25, 2000. The sampling included four sites in the vicinity of WTI during the annual performance test, which took place November 13-17, 2000. The air sampling was conducted for metals, PAHs, Dioxins, VOCs and particulate matter as well as collecting appropriate meteorological data from three sites

Analytical results of the first round of ambient air samples, performed on October 25 - 27, indicate that most metals of concern were within typical urban ambient air quality levels, but that two metals, chromium and manganese had relatively higher concentrations. A second round of ambient air sampling was conducted on November 1 and 2. Results from this round indicated that while almost all compounds and metals were within typical urban ambient air quality levels, manganese concentrations were elevated. Chromium was not detected during the second round of sampling.

A third round of sampling was performed on November 6 - 8, 10, and 11. A fourth round of sampling was performed on November 13 - 17, and the fifth round was performed between December 4 - 10. Results of these sampling rounds indicated that all metals and compounds were within typical urban ambient air quality levels, except somewhat elevated manganese concentrations were detected during the last round of sampling at several locations. Total chromium was also detected at a few sampling locations.

Soil sampling was performed on October 26 in front of East Elementary School and on the school playground, and on November 15 in front of the elementary school and on Walter Street. The results of analysis for dioxins indicated presence of low levels of dioxins similar to the background levels detected in urbanized areas around the United States. The results for metals detected, when compared with the background levels observed in the Eastern United States, indicate slightly elevated levels of arsenic and zinc around the school and chromium and zinc at the Walter Street sampling location. Although other metals were also, they generally consisted of expected levels of metals such as, calcium and sodium.

1

The analytical results were provided to the Agency for Toxic Substances and Disease Registry (ATSDR) for their conclusions/recommendations on public health implications of this data and their findings are attached in Appendix A.

Introduction

In June 1983, the United States Environmental Protection Agency (U.S. EPA) Region 5 completed its review of an application for a permit to build and operate a hazardous waste incinerator in East Liverpool, Ohio. Region 5 issued a permit under the Resource Conservation and Recovery Act (RCRA) for the facility, referred to as Waste Technologies Industries (WTI). Because of several petitions for review of that permit, it did not become effective until January 1985. The facility began construction in 1990 and first became operational in late 1992. To verify the protectiveness of the applicable regulations for this specific facility in this specific location, a preliminary risk assessment was completed in 1992, a trial burn and numerous performance tests were conducted in 1993 through 1994, and a detailed risk assessment was begun. The detailed risk assessment underwent two independent peer reviews and was completed in May 1997.

Ambient air monitoring was performed at 11 locations in the general East Liverpool, Ohio and nearby West Virginia (WV) area during the construction and startup phase of the WTI incinerator (Figure 1).

For almost 20 years, this facility has been the focus of intense opposition by local and national environmental groups because of its location near an elementary school and a residential area. A recent concern was raised in a Preliminary Report issued in October 2000 by the EPA National Ombudsman. The Ombudsman's Preliminary Report suggested that erroneous or misleading stack test data or ambient air nonitoring data might have been submitted shortly after the plant first began operation, and recommended that the plant be shut down for at least six months and be totally re-evaluated. Although the U.S. EPA believes that the Ombudsman's recommendations were based on factual errors in his Preliminary Report, it did take the concern seriously and responded by initiating an ambient air monitoring program around the WTI facility, and called for annual performance stack testing at the plant.

The U.S. EPA Environmental Response Team Center (ERTC) and the Office of Air Quality Planning and Standards (OAQPS) initiated environmental sampling and analysis in the East Liverpool area on October 25, 2000. The purpose of this report is to present the findings of the environmental sampling and analysis.

Five rounds of sampling were completed by December 10, 2000. All air sampling locations are shown in Figure 2. On October 25, 2000, ERTC mobilized its Response Engineering and Analytical Contract (REAC) contractor, and arrived on site for the first of the five sampling rounds. Initial air sampling was performed on October 25-27, 2000 (Sampling Round #1). Based upon the rapid-turn-around analytical results obtained from the first round of sampling, ERTC and OAQPS returned to the East Liverpool area on October 31, 2000, and performed ambient air sampling on November 1 and 2, 2000 (Sampling Round #2).

Analytical results from the second round enabled ERTC and REAC staff to return to the East Liverpool area on November 5, 2000, and perform additional ambient air sampling on November

6 - 8, 10, and 11, 2000 (Sampling Round #3). Based on site visits and the results of Sampling Rounds #1 and #2, OAQPS and ERTC designed a more comprehensive ambient sampling program to complement the emission testing scheduled for November 13-17, 2000. On November 10, 2000, additional REAC staff members were mobilized to the East Liverpool area to perform ambient air sampling on November 13-17, 2000 (Sampling Round #4), during emission testing of the WTI incinerator. OAQPS staff arrived on November 12 to coordinate ambient sampling efforts during the emission-testing period.

Air sampling was performed for volatile organic compounds (VOCs) (Sampling Rounds #1, #2, #4, and #5), metals (all five sampling rounds), polynuclear aromatic hydrocarbons (PAHs) (Sampling Round #4), dioxins/furans (Sampling Round #4), and inorganic acids (Sampling Rounds #1 and #2). Additionally, grab air samples for VOC analysis were collected at six air sampling locations and another two locations along the road adjacent to the WTI facility with Summa[®] canisters during Sampling Round #1, on October 26, 2000.

Soil samples were collected during Sampling Rounds #1 and #4 and analyzed for metals and dioxins/furans. Soil samples were collected from 10 sampling locations during Sampling Round #1 and from five sampling locations selected by the East Liverpool citizens group representative during Sampling Round #4. All soil sampling locations are shown in Figure 3.

Results from the first four rounds of air and soil sampling in the East Liverpool area revealed the presence of manganese and total chromium in some air samples. Consequently the US EPA/ERTC returned to the site and performed additional air sampling for metals and VOCs. On December 4, 2000, ERTC and REAC were mobilized for another round of air sampling (Sampling Round #5). Air sampling was performed for metals at 12 sampling locations and for VOCs at four sampling locations.

Air Sampling and Analysis Methods

Air sampling plans were developed in consultation with the Agency for Toxic Substances and Disease Registry (ATSDR), US EPA Region 5, OAQPS, and the Ohio EPA.

The majority of air and soil sampling throughout all the rounds were performed by ERTC and REAC staff. OAQPS staff performed particulate matter sampling (PM_{10} and $PM_{2.5}$) during Rounds 1 and 4 using Federal Reference Method (FRM) procedures. These methods also provided the ability to perform subsequent metals analyses, thereby providing a complementary sampling and analysis approach to the ERTC /REAC metals sampling, which utilized an open-face inlet for unlimited particle size collection.

The separate collection of PM₁₀ and PM_{2.5} size fractions allowed for identification of the dominant particle size fraction associated with high metals concentrations. The particle sizing provided a basis for inferring the type of sources that may be contributing to observed metals concentrations. OAQPS with support from its contractor, Research Triangle Institute, performed chemical speciation characterization (metals, ions and carbon fractions) of PM_{2.5} aerosols during

the emission testing period. OAQPS staff also performed sampling for hexavalent chromium during the emission testing period.

Ambient air sampling and analysis for VOCs were conducted according to a modified US EPA Toxic Organic Compendium Method TO-14: *Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using SUMMA Passivated Canister Sampling and Gas Chromatographic Analysis*. Six-liter Summa canisters were utilized to collect time integrated and grab samples. Twenty-four-hour-time integrated samples were collected using Entech CS1200 flow controllers. Each controller was calibrated to collect 3.4 cubic centimeters (cc) of air per minute to yield an approximate volume of 4.9 liters over the sampling period. Grab samples were obtained by using a pre-cleaned, pre-evacuated canister, opening the valve and collecting the sample.

Ambient air sampling and analysis for PAHs were conducted following modified (GC/MS-Selective Ion Monitoring) National Institute for Occupational Safety and Health (NIOSH) Method 5515, *Polynuclear Aromatic Hydrocarbons*. The sampling train consisted of a 600-mg washed XAD-2 solid sorbent tube with a 2-micrometer (µm), 37- millimeter (mm) Teflon (PTFE) pre-filter connected to a low/high flow personal sampling pump (SKC). The unit was calibrated to collect approximately 250 liters per minute (L/min) of air through the filter and sorbent tube. Sampling was conducted for 24 hours with an approximate air volume of 360 cubic meters being collected.

Ambient air samples for dioxins were collected following US EPA Method TO-9, *Determination of Polychlorinated Dibenzo-p-Dioxin (PCDD) in Ambient Air*. Analysis was performed as per US EPA SW-846, *Test Methods for Evaluating Hazardous Waste* Method 8290, *Polychlorinated Dibenzodioxin (PCDD) and Polychlorinated Dibenzofuran (PCDF) by High-Resolution Gas Chromatography/High-Resolution Mass Spectroscopy (HRGC/HRMS)*. The samples were collected utilizing the General Metal Works (GMW) pesticide sampler (PS-1). The sampler was operated according to ERTC/REAC Standard Operating Procedure (SOP) #2121 *High Volume Polyurethane Foam Sampling*. The sampler was calibrated to collect approximately 200 L/min of air through the filter. Sampling was conducted for 24 hours with an approximate air volume of 288 cubic meters being collected.

Sampling and analyses for metals were conducted following a modified NIOSH Method 7300, *Elements (ICP)*. The sampling train consisted of a 0.8-µm pore size 37-mm mixed cellulose ester filter (MCEF) connected to a medium flow sampling pump (Gilian Aircon). The sampling pump was calibrated to collect approximately 8 to 10 L/min of air through the filter. Sampling was conducted for periods ranging from 8 to 24 hours with resulting air volumes of 3,840 to 14,400 liters over a 24-hour period.

Sampling and analysis for $PM_{2.5}$ and PM_{10} mass concentrations were conducted using FRM monitors, in accordance with Field SOP for the $PM_{2.5}$ FRM Performance Evaluation Program. A modification allowed the sample time to be less than 23 hours per sample (~approx. 21-22 hours per sample). The sampling interval spanned from late morning of the first day to late morning of the second day. The FRM samplers use Teflon filters, collecting 16.67 liters of air per minute.

All laboratory operations (filter weighing) were performed under an EPA contract per SOP for PM_{2.5} Gravimetric Analysis.

Sampling and analysis for Speciated PM_{2.5} were conducted using Spiral Ambient Speciation Sampler (SASS), per modified Volume 2 SOP for *Chemical Speciation of Particulate Matter*. The sampler uses five parallel sample cassettes sampling 7 liters of air per minute, each having its own size-selective PM_{2.5} inlet, a denuder (if applicable), and a tandem filter holder. Three different types of filter media were used: Teflon (PTFE), Nylon, and Quartz. Teflon filters were analyzed by Inorganic Compendium Method IO-3.3 *Determination of Metals in Ambient Particulate Matter using X-Ray Fluorescence (XRF) Spectroscopy*, (EPA, 1997d) to characterize the elemental composition of the aerosol deposits. XRF analyses were performed by Chester LabNet in Tigard, Oregon.

Nylon filters were analyzed by Ion Chromatography (IC) to characterize aerosols that are soluble in water called aerosol ions. IC identifies both cations and anions. Quartz fiber filters were analyzed by thermal-optical instrumentation by the NIOSH Method 5040, *Elemental Carbon (Diesel Particulate)*, which reports total and major carbon fractions (organic, and elemental or light-absorbing carbon). Ion chromatography and carbon analyses were performed by the Research Triangle Institute located in Research Triangle Park, North Carolina.

Sampling and analysis for hexavalent chromium were conducted as per California Environmental Protection Agency Air Resources Board (CEPA-ARB) Method MLD 039, Standard Operating Procedure for the Analysis of Hexavalent Chromium at Ambient Atmospheric Levels by Ion Chromatography.

Sampling and analysis for mercury were conducted following a modified NIOSH Method 6009, *Mercury*. The sampling train consisted of a 200-mg hopcalite sorbent tube connected to a personal sampling pump (SKC). The sampling pump was calibrated to collect approximately 0.1 L/min of air through the sorbent tube. Sampling was conducted for 8 to 12 hours with a resulting air volume of 48 to 72 liters being collected.

Sampling and analysis for VOCs were conducted following modified (Gas Chromatography/Mass Spectrometry (GC/MS)) NIOSH methods: Method 1500, *Hydrocarbons, BP 36-126°C*; Method 1501, *Hydrocarbons, Aromatic*; and Method 1003, *Hydrocarbons, Halogenated*. The sampling train consisted of a 600-mg charcoal sorbent tube connected to a low/high flow personal sampling pump (Gillian or SKC). The sampling pump was calibrated to pull approximately 1 L/min of air through the sorbent tube. Sampling was conducted for 12 hours with a resulting air volume of 720 liters being collected.

All samples were packed along with chain of custody documentation. The carbon tube VOCs, metals, and mercury samples were shipped back to the REAC laboratory in Edison, NJ for analysis. The Summa canister VOCs, PAHs, and dioxin samples were shipped to the appropriate subcontracted laboratories for analysis. The hexavalent chromium air samples collected by RTP Associates were shipped to the California Environmental Protection Agency Air Resources

Board (CEPA-ARB) laboratory for analysis.

Weather data were obtained to support the meteorological needs of the ambient air sampling events and to document potential source impact. Meteorological monitoring was performed utilizing either one or two, 3-meter portable Met One Meteorological stations. The meteorological stations consist of a battery-operated tower that houses the core components of the station, including temperature, relative humidity, barometric pressure, wind speed, and wind direction sensors. The unit records data points internally or can communicate data to a base station via radio frequency.

The following U.S. EPA-ERTC/REAC SOPs were also used for air sampling:

1704	Summa Canister Sampling
1827	Analysis of Mercury in Air with a Modified NIOSH 6009 Method
2002	Sample Documentation
2003	Sample Storage, Preservation and Handling
2004	Sample Packaging and Shipment
2005	Quality Assurance/Quality Control Samples
2006	Sampling Equipment Decontamination
2008	General Air Sampling Guidelines
2103	Charcoal Tube Sampling in Ambient Air
2119	Air Sampling for Metals (NIOSH Method 7300, Elements)
2121	High Volume Polyurethane Foam Sampling
4005	Chain of Custody Procedures

Soil Sampling and Analysis Methods

Surface soil samples were collected from 0 to 6 inch depth levels at the soil sampling locations using clean scoops. The samples were placed in 4 ounce jars and sealed. Collected soil samples were analyzed for metals in accordance with SW-846, Method 7000A, *Atomic Absorption Methods*; Method 7471A, *Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)*; and Method 6010B, *Inductively Coupled Plasma-Atomic Emission Spectroscopy*. A representative portion was digested with acidic permanganate, cooled, treated with stannous chloride and analyzed for mercury on a Leeman Labs PS200II AA Spectrometer. Dioxin analysis was performed using SW-846, Method 8290A, *Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS)*.

Air Sampling Events

A phased sequence of air sampling was performed. Six sampling stations were utilized during the first three sampling rounds. The objective of these three rounds was to quantify the ambient air quality at and near the elementary school. Five of these locations were concentrated around the East Liverpool Elementary School. One was located along the Ohio River. The sampling locations for Sampling Rounds #1-3 were designated as EL-001 through EL-006.

Five sampling locations were selected for Sampling Round #4. These sampling locations were designated WTI-1 through WTI-5 and were intended to evaluate ambient air quality over a larger area in East Liverpool. A total of eight sampling locations were added during Sampling Round #5, one (WTI-3) was eliminated, for a total of 12 sampling locations. The added sampling locations were designated WTI-2A, WTI-5D, and WTI-6 through WTI-11, and expanded the area of investigation. Final sampling locations were selected in consultation with the US EPA Region 5. The ambient air sampling locations for all the sampling rounds are shown in Figure 2.

Sampling Rounds #1 and #2 consisted of three sampling events, each with duration of eight hours. Sampling and analyses were performed for VOCs, metals, and inorganic acids at all six sampling locations (EL-001 through EL-006). The sampling events were run sequentially, thereby covering a period of approximately 24 hours. The sampling locations and sampling events for Rounds #1 and #2 are summarized in Table 1. A map illustrating the sampling locations for Sampling Rounds #1-3 is shown in Figure 4. Pictures of the individual sampling locations are in Figures 5 through 10.

Sampling Round #3 consisted of four sampling events of about 24 hours duration each. Sampling and analyses were performed for metals at all six sampling locations (EL-001 through EL-006). The sampling locations and sampling events for Sampling Round #3 are summarized in Table 2.

Five sampling stations were utilized during the fourth sampling round. These locations were selected to provide a broader evaluation of ambient air quality in the area and to focus on identifying ambient concentrations of metals. Four sampling events of about 24- hour durations each were performed. One site was at the administration building of the school (WTI-1). Other sites included, East Liverpool Water Treatment Plant (WTI-2), the monitoring station operated by the WV DEP (as an indicator of background concentrations) (WTI-3), the roof of East Liverpool City Hall building (WTI-4), and the bank of the Ohio River at the end of Walter Street in East Liverpool (WTI-5). These sampling locations and sampling events are summarized in Table 3. The sampling locations are also presented in Figure 11. Pictures of the individual sampling locations are presented in Figures 12 through 16.

In an attempt to evaluate possible sources of metals, in particular chromium and manganese that had been identified during the previous sampling rounds as having relatively higher concentrations, the ambient air sampling locations were increased from 5 to 12 for Sampling Round #5. Eleven sampling events of approximately 12 hours each were carried out during the period December 4 -10, 2000. Four sampling stations were initially utilized during the fifth sampling round. These sampling locations included three previously used sites from Sampling Round #4, namely, the school administration building (WTI-1), the East Liverpool Water Treatment Plant (WTI-2), and the Walter Street Site (WTI-5). A new sampling location was added on December 4, 2000, the parking lot of the Columbiana County Port Authority (WTI-6).

Four additional sampling locations were added on December 5, 2000. One located to the west of

Ohio Avenue (WTI-7) and three sampling locations positioned near the S. H. Bell Company location in Pennsylvania (WTI-8-10). Four more sampling locations were added on December 6, 2000, for a total of 12 sampling locations. These locations included a duplicate sample at the WTI-5 site (WTI-5D), an additional location at the East Liverpool Water Treatment Plant (WTI-2A), an additional location in Pennsylvania, east of S. H. Bell Company (WTI-11) and a return to the East Liverpool City Hall roof site (WTI-4).

Sampling and analysis was performed for metals at all 12 locations and for VOCs at four locations. These sampling events are summarized in Table 4. Figure 17 depicts the air sampling locations for Sampling Round #5. Pictures of the additional Round #5 sampling locations are presented in Figures 18 through 24.

Soil Sampling Events

To supplement the air sampling data and provide additional information on the historical ambient impacts in the area, soil sampling was performed during Sampling Rounds #1 and #4. Consistent with the air sampling in Round #1, soil sampling was concentrated near the elementary school. Nine sampling locations were selected on the school property and the tenth was on the air sampling location along the Ohio River off Ohio Avenue (air sampling location EL-006). Surface soil sampling was performed on October 26, 2000. The soil sampling locations for Round #1 are lsted in Table 5 and shown in Figure 25. Pictures of the individual sampling locations are located in Figures 26 -35.

Previous to ERTC involvement at the site, Save our County (SAC), a local environmental group had conducted soil sampling and analysis at the school property. SAC's results differed from the ERTC round 1 results. However, since the two sets of samples were taken at different locations within the school property, and employed different analytical methods, a comparison between the two sets of sample results could not be made. To alleviate this problem another set of soil samples was taken during air sampling round 4. These samples were taken by ERTC at two locations on school property identified by a representative of SAC as the locations originally sampled by SAC. In addition two other locations were sampled for a total of four locations on the school property. At each of the four locations, spoonfuls of soil were alternately placed into two jars; one jar was maintained by ERTC, and one jar was given to the SAC representative with a signed chain of custody. Due to public concern about the Walter Street site (WTI-5) an additional three samples (one duplicate) were collected there. SAC did not request a split of the Walter Street samples. The soil sampling locations for Round #4 are listed in Table 6 and in Figure 36. Pictures of these locations are presented in Figures 37 through 41.

Meteorological Data Monitoring

Meteorological data monitoring was conducted during Sampling Rounds #2, #4, and #5. The locations for Sampling Round #2 were on the roof of the East Liverpool Elementary School near Air Sampling Location EL-002 and at Air Sampling Location EL-006. The meteorological monitors were located on the roof of the East Liverpool Administration Building (Air Sampling

Location WTI-1), and at the East Liverpool Water Treatment Plant (Air Sampling Location WTI-2) for Sampling Rounds # 4 and #5. Monitoring was performed with Met One Instruments Portable Weather Station, which included a 3-meter tower, wind sensor, temperature/humidity sensor with shield, barometric pressure sensor, solar radiometer, and rain gauge. All data were collected on the AutoMet 466A Data Logger. Communications for remote download were available using a 900-MHz Spread Spectrum Radio modem system via an RS-232 link. Supplemental power was supplied from a power system that uses a solar panel. Where possible AC power was used.

Quality Assurance

All analyses were performed in accordance with the standard EPA, ASTM, and NIOSH test methods with some modifications to flow rates and duration to improve sensitivity and detection limits. Internal standard, surrogate compounds, blank samples and applicable matrix spike/matrix spike duplicate (MS/MSD) samples were used to verify the quality of the analytical data. All the pertinent information regarding sampling and analysis were recorded in appropriate logbooks and/or data sheets. A Quality Assurance Project Plan (QAPP) was developed by OAQPS and followed for ambient air sampling activities conducted during Sampling Round #4 (Emission Testing) sampling.

The following Quality Assurance/Quality Control Protocols are applicable to all sample matrices results:

- Sample documentation in the form of field logbooks, appropriate field data sheets, and chain of custody forms were provided. Chain-of-custody sheets are optional for field screening locations.
- 2 All instrument calibration and/or performance check procedures/methods were summarized and documented in the field/personal or instrument log notebook.
- 3 Detection limit(s) were determined and recorded, along with the data, where appropriate.
- 4 Sample holding times were documented; this includes documentation of sample collection and analysis dates.
- 5 Initial and continuing instrument calibration data were provided.
- 6 For air samples, lot blanks, field blanks, collocated samples, trip blanks, and breakthrough samples were included at the rate specified in attached tables.
- Analyte identifications Analyte identification on 10 percent of the screened (field or lab) or 100 percent of the unscreened samples were confirmed using a US EPA-approved method; documentation such as chromatograms, mass spectra, etc. were provided.
- 8 Quantitation Documentation for quantitative results from screening and US EPAapproved verification methods (for screened samples) or quantitative results (in the case of unscreened samples) were provided.

Results and Discussion for Ambient Air

Air samples were analyzed for VOCs in air by Air Toxics, Ltd. using US EPA Method TO-14, metals in air using a modified NIOSH Method 7300 by REAC, and inorganic acids in air by Galson Laboratories using NIOSH Method 7903. These results indicate that the VOC and metal ambient air concentrations are at or below the levels monitored by the state agencies in urban areas of Ohio and Pennsylvania. Tables 7 through 9 present the detected concentrations of VOCs, metals, and inorganic acids for the initial air sampling conducted on October 25 - 27, 2000.

The first round of ambient air monitoring was conducted between October 25-27, 2000. Results for chromium (ND-1.3 μ g/m³) in Round 1 of the testing were slightly higher than observed previously by the Ohio EPA. Ambient air sampling of this area during 1993-1995 and 1999-2000 showed the presence of chromium between ND and 0.09 μ g/m³. Manganese results (ND-3.0 μ g/m³) were in the same range as seen in the Ohio EPA air sampling in this area during 1999 and 2000 (0.3 to 3.29 μ g/m³).

Metals analyses using EDXRF on the PM $_{2.5}$ and PM $_{10}$ mass samples confirmed similar readings to those described in the above paragraph on the PM $_{10}$ filters (chromium 4.4 and 2.8 μ g/m³, manganese (62 and 9.2 μ g/m³) but not on the PM $_{2.5}$ filters. Levels for chromium and manganese on the PM $_{2.5}$ filters were less than 1 μ g/m³, clearly linking these metal concentrations with the coarse particle size fraction (2.5 - 10 μ). Coarse particles typically are associated with mechanically generated processes, whereas particles less than 2.5 μ more often are associated with combustion processes. The observed chromium levels led to sampling and analysis for hexavalent chromium during Sampling Round #4.

Results for the second round of air sampling performed on November 1 and 2, 2000 are presented in Tables 10 through 12. Air samples were analyzed for VOCs, metals, and inorganic acids as described for Round #1. All concentrations were within typical ambient air quality levels for urban areas, except for manganese. Manganese was detected in several samples with the highest concentrations of 2.4 μ g/m³ near the school (location EL-002), and 7.3 μ g/m³ at location EL-006 (Ohio River Bank). Chromium was not detected during the second round of sampling.

Table 13 summarizes the detected concentrations for Sampling Round #3, performed on November 6 - 8, 10 and 11. The focus of this sampling round was metals, which were collected over a 24-hour period and analyzed in accordance with NIOSH Method 7300 by REAC. Manganese continued to be detected near a house adjacent to the school (location EL-004), at concentrations up to 4.1 μ g/m³, and near the river, up to 22 μ g/m³ at location EL-006. Chromium was also detected near the school, the highest concentrations being 0.11 μ g/m³ and up to 0.16 μ g/m³ was detected near the river at location EL-006.

Results for dioxins, PAHs, metals and VOCs for samples from Sampling Round #4 (November 13-17, 2000) are summarized in Tables 14 through 17. Dioxin and furans analysis results from

this sampling event are reported in the Table 14 in terms of actual concentration and in Table 18 as toxicity equivalent values (TEQ). The TEQ values are obtained by multiplying results for each compound by a weighting factor based on the relative toxicities of each compound. Typical dioxin levels (expressed as total TEQs values) for several locations around the world are presented in Table 19. Low levels of dioxins (0.008-0.097 pg/m³ TEQ) were detected at sampling locations WTI-1, WTI-2, and WTI-3, except for 2.370 pg/m³ TEQ at WTI-2 on November 16, and 2.201 pg/m³ TEQ at location WTI-5 on November 15.

Dioxins and furans are short collective designations for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Both are tricyclic, chlorine-substituted, organic compounds belonging to a class of chemicals called organochlorines. In these compounds the chlorine atoms are attached to specific carbon atoms in an identical carbon-oxygen framework. The number of chlorine substituents may range from one to eight, which means 75 possible PCDD congeners ("members of the group") and 135 possible PCDF congeners.

Combustion processes, where fuel containing both carbon and chlorine are present, can produce a wide range of dioxin/furan compounds. Operations, such as incinerators and other industrial combustion sources, home fireplaces, wood burning stoves, burn barrels, and diesel fuel combustion could also produce dioxins. All of these potential sources are in the area of sampling locations WTI-2 and WTI-5, and could be the source(s) of the higher values recorded on November 15 and 16.

Concentrations of PAHs, VOCs and most of the metals detected in Sampling Round #4 were within typical ambient air quality levels for urban air, with the exception of chromium. Chromium was detected at a concentration of 5.8 μ g/m³ on November 16 at Sampling Location WTI-2, the Water Treatment Plant. Manganese was also detected on November 16, at a concentration of 9.5 μ g/m³ at the WTI-2 sampling location and up to 1.7 μ g/m³ at the Walter Street site (WTI-5 sampling location) (Table 16). The WTI-5 sampling site is along the Ohio River.

PM $_{10}$ and PM $_{2.5}$ mass results ranged from 10.5 to 25.6 $\mu g/m^3$, with 16 - 76 percent of the mass located in the PM $_{2.5}$ fraction. Most samples ranged between 50 and 75 percent, which is typical for larger spatial scale characteristics for the greater Ohio-Pennsylvania-West Virginia region. EDXRF metals analyses on PM $_{10}$ filters indicated chromium concentrations of 18 $\mu g/m^3$ at site WTI-2 on sampling periods November 15-16 and 2.2 $\mu g/m^3$ on November 13-14. A manganese concentration of 3.4 $\mu g/m^3$ was observed at sampling site WTI-2 on November 15-16. Chromium (0.74 and 0.69 $\mu g/m^3$) and manganese (0.45 and 1.2 $\mu g/m^3$) were observed in the Walter street sampling site (WTI- 5) samples from November 15-17. While these concentrations were higher than other measurements, they are reasonably consistent with historical data from this area, and also, reasonably consistent with the Ohio EPA measurements of other urban locations.

Most of the hexavalent chromium data indicated levels below non detection, the highest estimated value of 1.58 ng/m³ was observed at sampling site WTI-2 (Water Treatment Plant) on November 15-16. These data clearly indicate that the relatively high total chromium concentration contained an extremely small fraction (less than 0.1 percent) of hexavalent chromium.

Chemical speciation results (Table 20, Figure 42) for $PM_{2.5}$ fraction exhibit fairly typical composition patterns for the region, dominated by sulfates, carbon and nitrate. The relatively elevated level of elements at the water treatment site with respect to the other site locations is indicative of a localized source that is likely contributing to the same elevated levels of chromium and manganese observed in the PM_{10} fraction. With the exception of the Water Treatment Plant site (WTI-2), the composition at all sites was comparable to that observed at the background Lawrenceville, West Virginia site.

The methylene chloride concentration detected at sampling location WTI-5 on November 16 was 1200 ppbv (Table 17). All other detected concentrations of methylene chloride at all locations were significantly lower (1.8 - 59ppbv).

Table 21 summarizes the analytical results for metals from samples taken during Sampling Round #5 (December 5-10, 2000). These results indicate that the ambient concentrations of metals were at levels typically found in urban air. Chromium results ranged from ND - 0.59 $\mu g/m^3$. Manganese was observed in the range of ND - 3.9 $\mu g/m^3$, except at Location WTI-5 where up to 8.9 $\mu g/m^3$ of manganese was detected. The remaining metals were detected within concentrations typically found in urban air. Mercury was not detected in any of the samples.

Results for VOC analysis from Sampling Round #5 are summarized in Table 22. Only 8 out of 44 samples collected showed concentrations above the method detection limit (MDL). These samples indicated the presence of two VOCs, one sample contained both benzene and toluene, whereas the other seven contained only toluene. These nine concentrations were less than 1 ppbv. The samples were analyzed for a total of 46 VOCs.

Results and Discussion for Soil Samples

Tables 23, 24, 25, and 26 summarize the metals and dioxins results in soil for Sampling Round #1 and #4. Soil sampling was performed on October 26 (school playground) and on November 15 (in front of school and Walter Street). Levels of dioxins detected in the soil samples were low and similar to the background levels detected in the United States.

The results for most metals detected are comparable to the background levels observed in rural to light industrial areas of the eastern United States. However, some slightly above typical background levels of arsenic and zinc were found around the school and slightly elevated levels of chromium and zinc were found at the Walter Street sampling location. Although other metals were also detected, they generally consisted of expected levels of metals, such as calcium and sodium.

Results and Discussion for Meteorological Data

Wind rose plots representing the frequency and speed of winds blowing from the various compass directions for each of the sampling events are located in Figures 42 through 63. The wind roses show variability depending upon the location of the monitor. Even though the monitors were located in the river valley area, there was no consistent pattern of wind flow among the three locations used. In addition, although there was a pattern of east-west wind flow direction consistent with the river valley, the frequency of the wind pattern varied with monitor location. The EL-002 and WTI-1 sampling locations were at higher elevations in the river valley area than the WTI-2 sampling location. This difference in elevation was sufficient to cause wind flow variation between the higher and lower elevation monitoring locations.

Potential sources of air pollution impacting the area where the air sampling sites were located include the WTI incinerator with fugitive ground level and stack release emissions and several industrial operations with potential fugitive releases at ground level.

Conclusions

The results of the ambient air and surface soil sampling conducted in the East Liverpool area generally revealed concentrations of contaminants of concern in ranges typical of urban areas, including the presence of manganese and chromium at certain locations. Due to the valley effect, meteorological data were inconclusive and the source(s) of the elevated concentrations of chromium and manganese could not be traced conclusively.

The analytical results were provided to ATSDR for their health evaluation and the preliminary health evaluation performed by ATSDR is attached in Appendix A.

References

Pennsylvania, Air Quality Monitoring, 1999 Annual Report.

State of Ohio, Environmental Protection Agency, Division of Air Pollution Control, 1999 Ohio Air Quality Report.

State of Ohio, Web Site, Listing of Emission Sources in Columbiana County, March 13, 2001.

Tamaki, B. posting to dioxin listery, dioxin-1@essential.org., May 14-16, 1998.

West Virginia, Department of Environmental Protection, Ambient Air Quality, Monitoring Data for Chester, WV Monitoring Site, 1993-1999.

Tables

Table 1 **Ambient Air Sampling** Sampling Rounds #1 and 2

SAMPLE NUMBER	SAMPLING DATE / TIME	VOCs SAMPLE DURATION (MINUTES)	METALS SAMPLE DURATION (MINUTES)	INORGANIC ACIDS SAMPLE DURATION (MINUTES)
Event #1-1				
EL-001	25 Oct 00 / 1628-2428	480	480	480
EL-002	25 Oct 00 / 1620-2420	480	480	480
EL-003	25 Oct 00 / 1634-2434	480	480	480
EL-004	25 Oct 00 / 1641-2441	480	480	480
EL-005	25 Oct 00 / 1651-2451	370	480	480
EL-006	25 Oct-00 / 1710-0110	480	480	480
Event #1-2				
EL-001	26 Oct 00 / 0626-1426	150	480	480
EL-002	26 Oct 00 / 0619-1419	480	480	480
EL-003	26 Oct 00 / 0631-1431	480	480	480
EL-004	26 Oct 00 / 0636-1436	480	480	374
EL-005	26 Oct 00 / 0648-1448	381	480	480
EL-006	26 Oct 00 / 0655-1455	480	480	480
Event #1-3				
EL-001	26-27 Oct 00 / 2254-0654	480	480	480
EL-003	26-27 Oct 00 / 2255-0655	353	480	480
EL-004	26-27 Oct 00 / 2300-0700	480	480	480

Location: EL-001 Elementary School at SW Co	orner
---	-------

EL-002

Elementary School at Entrance Backyard of E House on Etruria Street EL-003

EL-004

EL-005

Side yard of C House on Etruria Street near garage Elementary School Playground Bank of Ohio River across from 1911 Ohio Avenue EL-006

SAMPLE NUMBER	SAMPLING DATES	VOCs SAMPLE DURATION (MINUTES)	METALS SAMPLE DURATION (MINUTES)	INORGANIC ACIDS SAMPLE DURATION (MINUTES)
Event #2-1				
EL-001	1 Nov 00	480	480	480
EL-002	1 Nov 00	480	480	480
EL-003	1 Nov 00	345	480	480
EL-004	1 Nov 00	480	480	480
EL-005	1 Nov 00	330	480	480
EL-006	1 Nov 00	480	480	480
Event #2-2				
EL-001	1-2 Nov 00	480	480	480
EL-002	1-2 Nov 00	480	480	480
EL-003	1-2 Nov 00	480	480	480
EL-004	1-2 Nov 00	244	480	480
EL-005	1-2 Nov 00	480	480	480
EL-006	1-2 Nov 00	480	480	480
Event #2-3				
El-001	2 Nov 00	480	480	480
EL-002	2 Nov 00	480	480	480
EL-003	2 Nov 00	477	480	374
EL-004	2 Nov 00	480	480	480
EL-005	2 Nov 00	480	Pump Failure	399
EL-006	2 Nov 00	480	480	480

Location: EL-001 Elementary School at SW Corner

EL-002 Elementary School at Entrance

EL-003 Backyard of E House on Etruria Street

EL-004 Side yard of C House on Etruria Street near garage

EL-005 Elementary School Playground

EL-006 Bank of Ohio River across from 1911 Ohio Avenue

Table 2 **Ambient Air Sampling** Sampling Round #3

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION (MINUTES)			
Event #3-1					
EL-001	6-7 Nov 00	1237			
EL-002	6-7 Nov 00	1237			
EL-003	6-7 Nov 00	1206			
EL-004	6-7 Nov 00	703			
EL-005	6-7 Nov 00	1257			
EL-006	6-7 Nov 00	1159			
Event #3-2					
EL-001	7-8 Nov 00	1488			
EL-002	7-8 Nov 00	1342			
EL-003	7-8 Nov 00	1355			
EL-004	7-8 Nov 00	1178			
EL-005	005 7-8 Nov 00 1302				
EL-006	5 7-8 Nov 00 1278				
Event #3-3					
EL-001	10-11 Nov 00	1250			
EL-002	10-11 Nov 00	1256			
EL-003	10-11 Nov 00	1269			
EL-004	10-11 Nov 00	124			
EL-005	10-11 Nov 00	1272			
EL-006	10-11 Nov 00	1240			
Event #3-4					
EL-001	11-12 Nov 00	1475			
EL-002	11-12 Nov 00	1439			
EL-003	11-12 Nov 00	1439			
EL-004	11-12 Nov 00	930			
EL-005	11-12 Nov 00	1444			
EL-006	11-12 Nov 00	1156			

Location: EL-001 Roof of Administration Building

Elementary School at Entrance EL-002

Backyard of E House on Etruria Street EL-003

EL-004 Side yard of C House on Etruria Street near garage

EL-005

Elementary School Playground Bank of Ohio River across from 1911 Ohio Avenue EL-006

Table 3
Ambient Air Sampling
Sampling Round #4

SAMPLE NUMBER	SAMPLING DATE /TIMES	DIOXIN SAMPLE DURATION (MINUTES)	PAH SAMPLE DURATION (MINUTES)	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)
Event #4-1					
WTI-1	13 Nov 00 @ 1620- 14 Nov 00 @ 1608	1413	1428	1390	1405
WTI-2	13 Nov 00 @ 1336- 14 Nov 00 @ 1424	1488	1474	1420	1440
WTI-3	13 Nov 00 @ 1655- 14 Nov 00 @ 1518	1313	1338	1316	1340
WTI-4	Not Sampled				
WTI-5	13 Nov 00 @ 1434- 14 Nov 00 @ 1657		-	1017	1540
Event #4-2					
WTI-1	14 Nov 00 @ 1537- 15 Nov 00 @ 1656	1502	1488	Sample not analyzed*	1497
WTI-2	14 Nov 00 @ 1410- 15 Nov 00 @ 1422	1439	1438	1440	1469
WTI-3	14 Nov 00 @ 1451- 15 Nov 00 @ 1504	1427	1427	1451	1431
WTI-4	14 Nov 00 @ 1620- 15 Nov 00 @ 1608				1640
WTI-5	14 Nov 00 @ 1114- 15 Nov 00 @ 1657	832	832	839	

^{*}Sample fell during sampling period and was contaminated.

Location: WTI-1 Roof of Administration Building

WTI-2 Water Treatment Plant

WTI-3 West Virginia DEP site, Lawrenceville, WV

WTI-4 Roof of East Liverpool City Hall

WTI-5 End of Walter Street

Table 3 (continued) Ambient Air Sampling Sampling Round #4

NUMBER	SAMPLING DATE /TIMES	DIOXIN SAMPLE DURATION (MINUTES)	PAH SAMPLE DURATION (MINUTES)	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)
Event #4-3					
WTI-1	15 Nov 00 @ 1706- 16 Nov 00 @ 1637	1409	1411	1409	Grab
WTI-2	15 Nov 00 @ 1434- 16 Nov 00 @ 1453	1457	1458	1458	1447
WTI-3	15 Nov 00 @ 1519- 16 Nov 00 @ 1530	1450	1450	1399	1450
WTI-4	15 Nov 00				Grab
WTI-5	15 Nov 00 @ 1630- 16 Nov 00 @ 1619		-	831	1429
Event #4-4	Event #4-4				
WTI-1	16 Nov 00 @ 1643- 17 Nov 00 @ 1549	1386	1386	1386	Grab
WTI-2	16 Nov 00 @1458- 17 Nov 00 @1443	1424	1424	1425	-
WTI-3	16 Nov 00 @1535- 17 Nov 00 @1530	1428	1428	1435	-
WTI-4	16 Nov 00	-	-		Grab
WTI-5	16 Nov 00 @1619- 17 Nov 00 @1515	1376	1376	780	-

Location: WTI-1 Roof of Administration Building

WTI-2 Water Treatment Plant

WTI-3 West Virginia DEP site, Lawrenceville, WV

WTI-4 Roof of East Liverpool City Hall

WTI-5 End of Walter Street

Table 4
Ambient Air Sampling
Sampling Round #5

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION	VOCs SAMPLE DURATION (MINUTES)
Event #5-1	·		
WTI-1	4-5 Dec 00	746	720
WTI-2	4-5 Dec 00	757	720
WTI-5	4-5 Dec 00	10	720
WTI-6	4-5 Dec 00	489	720
Event #5-2	·		
WTI-1	5 Dec 00	635	634
WTI-2	5 Dec-00	632	631
WTI-5	5 Dec 00	634	635
WTI-6	5 Dec 00	609	610
Event #5-3			
WTI-1	5-6 Dec	720	714
WTI-2	5-6 Dec	718	155
WTI-5	5-6 Dec	184	713
WTI-6	5-6 Dec	352	711
WTI-7	5-6 Dec 00	720	
WTI-8	5-6 Dec 00	720	
WTI-9	5-6 Dec 00	720	
WTI-10	5-6 Dec 00	720	
Event #5-4			
WTI-1	6 Dec 00	725	720
WTI-2	6 Dec 00	724	720
WTI-5	6 Dec 00	725	720
WTI-6	6 Dec 00	510	720
WTI-7	6 Dec 00	720	
WTI-8	6 Dec 00	720	
WTI-9	6 Dec 00	720	
WTI-10	6 Dec 00	720	

Location: WTI-1 Roof of Administration Building

WTI-2 Water Treatment Plant
WTI-5 End of Walter Street
WTI-6 Port Authority Parking Area

WTI-7 West End of Ohio Avenue
WTI-8 Route 39 E at Monument
WTI-9 Route 39 E at Entrance

WTI-10 East End of S. H. Bell

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)	
Event #5-5				
WTI-1	6-7 Dec 00	726	720	
WTI-2	6-7 Dec 00	730	720	
WTI-2A	6-7 Dec 00	720		
WTI-4	6-7 Dec 00	720		
WTI-5	6-7 Dec 00	535	720	
WTI-5D	6-7 Dec 00	720		
WTI-6	6-7-Dec 00	720	720	
WTI-7	6-7 Dec 00	0		
WTI-8	6-7 Dec 00	720		
WTI-9	6-7 Dec 00	720		
WTI-10	6-7 Dec 00	720		
WTI-11	6-7 Dec 00	720		
Event #5-6				
WTI-1	7 Dec 00	720	720	
WTI-2	7 Dec 00	714	713	
WTI-2A	7 Dec 00	717		
WTI-4	7 Dec 00	720		
WTI-5	7 Dec 00	221	717	
WTI-5D	7 Dec 00	717		
WTI-6	7 Dec 00	325	720	
WTI-7	7 Dec 00	720		
WTI-8	7 Dec 00	26		
WTI-9	7 Dec 00	720		
WTI-10	7 Dec 00	720		
WTI-11	7-Dec 00	356		

Location: WTI-1 Roof of Administration Building WTI-2 Water Treatment Plant \mbox{PM}_{10} Location at Water Treatment Plant WTI-2A East Liverpool City Hall Roof WTI-4 End of Walter Street WTI-5 WTI-5D Walter Street Duplicate WTI-6 Port Authority Parking Area West End of Ohio Avenue WTI-7 WTI-8 Route 39 E at Monument WTI-9 Route 39 E at Entrance WTI-10 East End of S. H. Bell

WTI-11 Cause Ave. at East end of S. H. Bell

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)
Event #5-7			
WTI-1	7-8 Dec 00	711	712
WTI-2	7-8 Dec 00	720	720
WTI-2A	7-8 Dec 00	720	
WTI-4	7-8 Dec 00	705	
WTI-5	7-8 Dec 00	714	715
WTI-5D	7-8 Dec 00	715	
WTI-6	7-8 Dec 00	492	706
WTI-7	7-8 Dec 00	720	
WTI-8	7-8 Dec 00	720	
WTI-9	7-8 Dec 00	720	
WTI-10	7-8 Dec 00	720	
WTI-11	7-8 Dec 00	720	
Event #5-8			
WTI-1	8 Dec 00	694	694
WTI-2	8 Dec 00	692	693
WTI-2A	8 Dec 00	692	
WTI-4	8 Dec 00	698	
WTI-5	8 Dec 00	682	691
WTI-5D	8 Dec 00	690	
WTI-6	8 Dec 00	694	694
WTI-7	8 Dec 00	690	
WTI-8	8 Dec 00	693	
WTI-9	8 Dec 00	694	
WTI-10	8 Dec 00	695	
WTI-11	8 Dec 00	693	

Location WTI-1 Roof of Administration Building WTI-2 Water Treatment Plant PM₁₀ Location at Water Treatment Plant East Liverpool City Hall Roof WTI-2A WTI-4 WTI-5 End of Walter Street Walter Street Duplicate WTI-5D Port Authority Parking Area WTI-6 West End of Ohio Avenue WTI-7 Route 39 E at Monument WTI-8 WTI-9 Route 39 E at Entrance WTI-10 East End of S. H. Bell

WTI-11 Cause Ave. at East end of S. H. Bell

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)
Event #5-9			
WTI-1	8-9 Dec 00	737	219
WTI-2	8-9 Dec 00	742	720
WTI-2A	8-9 Dec 00	720	
WTI-4	8-9 Dec 00	720	
WTI-5	8-9 Dec 00	328	720
WTI-5D	8-9 Dec 00	738	
WTI-6	8-9 Dec 00	159	720
WTI-7	8-9 Dec 00	720	
WTI-8	8-9 Dec 00	720	
WTI-9	8-9 Dec 00	720	
WTI-10	8-9 Dec 00	720	
WTI-11	8-9 Dec 00	720	
Event #5-10			
WTI-1	9 Dec 00	705	705
WTI-2	9 Dec 00	701	701
WTI-2A	9 Dec 00	702	
WTI-4	9 Dec 00	703	
WTI-5	9 Dec 00	570	702
WTI-5D	9 Dec 00	700	
WTI-6	9 Dec 00	653	704
WTI-7	9 Dec 00	700	
WTI-8	9 Dec 00	700	
WTI-9	9 Dec 00	701	
WTI-10	9 Dec 00	702	
WTI-11	9 Dec 00	701	
Location WTI-1 Roof of Administration Building			

WTI-2 Water Treatment Plant
WTI-2A PM₁₀ Location at Water Treatment Plant
WTI-4 East Liverpool City Hall Roof
WTI-5 End of Walter Street
WTI-5D Walter Street Duplicate
WTI-6 Port Authority Parking Area
WTI-7 West End of Ohio Avenue

WTI-8 Route 39 E at Monument WTI-9 Route 39 E at Entrance

WTI-10 East End of S. H. Bell

WTI-11 Cause Ave. at East end of S. H. Bell

SAMPLE NUMBER	SAMPLING DATES	METALS SAMPLE DURATION (MINUTES)	VOCs SAMPLE DURATION (MINUTES)
Event #5-11			
WTI-1	9-10 Dec 00	717	720
WTI-2	9-10 Dec 00	715	717
WTI-2A	9-10 Dec 00	720	
WTI-4	9-10 Dec 00	720	
WTI-5	9-10 Dec 00	676	720
WTI-5D	9-10 Dec 00	720	
WTI-6	9-10 Dec 00	720	720
WTI-7	9-10 Dec 00	720	
WTI-8	9-10 Dec 00	720	
WTI-9	9-10 Dec 00	718	
WTI-10	9-10 Dec 00	711	
WTI-11	9-10 Dec 00	720	

Location	WTI-1	Roof of Administration Building
	WTI-2	Water Treatment Plant
	WTI-2A	PM ₁₀ Location at Water Treatment Plant
	WTI-4	East Liverpool City Hall Roof
	WTI-5	End of Walter Street
	WTI-5D	Walter Street Duplicate
	WTI-6	Port Authority Parking Area
	WTI-7	West End of Ohio Avenue
	WTI-8	Route 39 E at Monument
	WTI-9	Route 39 E at Entrance
	WTI-10	East End of S. H. Bell
	WTI-11	Cause Ave. at East end of S. H. Bell

Table 5 Soil Sampling Sampling Round #1

SAMPLE NUMBER	SAMPLING LOCATION	SAMPLING DATE
EES-1	SW Corner of School	October 26, 2000
EES-2	School Entrance	October 26, 2000
EES-3	SE Corner of School	October 26, 2000
EES-4	Playground Swing Set	October 26, 2000
EES-5	Playground Ladder	October 26, 2000
EES-6	Bottom of Slide	October 26, 2000
EES-7	W Side Snack Shack	October 26, 2000
EES-8	Home Base	October 26, 2000
EES-9	Center Field	October 26, 2000
EES-10	Bank of Ohio River	October 26, 2000

Table 6 Soil Sampling Sampling Round #4

SAMPLE NUMBER	SAMPLING LOCATION	SAMPLING DATE
SE-1	SE Corner of School	November 15, 2000
SE-2	SW Corner of School	November 15, 2000
SE-3	Front of School	November 15, 2000
SE-4	School Entrance	November 15, 2000
WTI-5	End of Walter Street	November 15, 2000

TABLE 7
SUMMARY TABLE FOR VOCs DETECTED IN AIR - ROUND #1
Dates Sampled October 25-27, 2000

Sample Number		29376	23831	23574	29375	23830	29377	23832	23575	29378	23833	23576	29379	23834	29388	23851	
Sampling Location		EL-001	EL-001	EL-001	EL-002	EL-002	EL-003	EL-003	EL-003	EL-004	EL-004	EL-004	EL-005	EL-005	EL-006	EL-006	
Date Sampled		25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	25-Oct	26-Oct	
Volume (Liters)		480	150	480	480	480	480	480	353	480	480	480	370	381	480	480	
						(Concentrat	ion in part	s per billio	n by volume (ppbv)							
Compound	Range																MDL*
1,1,1,-Trichloroethane	ND-0.49J					0.38 J		0.49 J			0.46			0.4 J		0.42 J	0.8
Benzene	ND-2.1J	1.2 J	2.1 J		1.2 J	1.1 J	1.2 J	1.2 J	0.9 J	1.2 J	1.3	0.79 J	1.9	1.4 J	1.2 J	0.9 J	1.3
n-Heptane	ND-0.71J	0.71 J			0.39 J					0.3 J		0.27 J	0.71 J				0.9
Trichloroethene	ND-0.2J					0.18 J		0.2 J								0.17 J	0.7
Methylcyclohexane	ND-0.77J	0.77 J			0.33 J		0.6 J					0.2 J					0.9
Toluene	ND-5.5	2.6	2.6 J		3.0	1.7	3.0	1.8	2.3	5.5	2.0	2.3	4.7	5.4	2.2	1.2	1.1
Tetrachloroethene	ND-0.13J										0.13 J						0.6
Ethylbenzene	ND-0.36J						0.32 J			0.36 J							0.9
p-Xylene	ND-2.1	1.0			1.1	0.6 J	1.1	0.64 J	0.9 J	1.4	0.69 J	0.85 J	2.1	0.9 J	0.87 J	0.4 J	0.9
o-Xylene	ND-0.5J	0.37 J						0.21J		0.5 J				0.34 J	0.32 J		1.0
Mesitylene	ND-0.5J									0.5 J							8.0
D-Limonene	ND-0.83J				0.2 J					0.59 J				0.83 J			0.7
											-						
Sample Number		29362	29361	29363	29364	29365	29366	29367	29368	29360	MDL:	Method De	etection Lim	it			
Sampling Location		EL001	EL002	EL003	EL004	EL005	EL006	EL007	EL008	onsite after hours	J:	The value	is below the	method de	tection limit	and is es	timated
Date Collected		26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	24-Oct	*:	MDL base	d on 480 Lit	ers of samp	le volume		
			(Concentrat	ion in part	s per billio	n by volum	ne (ppbv)			TICs:	Tentatively	/ Identified C	Compounds			
Compound	Range																
Freon 12	ND-0.79		0.78	0.76	0.78	0.72	0.79	0.69	0.78	0.73							
Chloromethane	0.69-1.1	0.77	0.74	0.78	0.99	0.84	0.79	0.69	1.1	0.74		Sampling	Locations:				
Benzene	0.71-1.9	1	1.1	0.93	1.9	1.2	0.71	0.78	0.73	0.72		EL-001	Elementary	School at	SW Corner		
Toluene	1.1-3.6	1.8	2.8	1.8	3.6	2.4	1.1	1.6	1.5	1.1		EL-002	Elementary	/ School at	Entrance		
m,p-Xylene	ND-1.9		0.92		1.9	0.82						EL-003	Backyard o	of E House	on Etruria S	treet	
1,2,4-Trimethylbenzene	ND-0.75				0.75							EL-004	Side yard	of C House	on Etruria S	Street near	garage
												EL-005	Elementary	School Pla	ayground		
Total TICs	37.7-67.3	52.3	67.3	56.9	62.3	57	37.7	50.8	47	55.5		EL-006	Bank of Oh	nio River acı	ross from 19	911 Ohio <i>A</i>	venue

TABLE 8
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #1
Dates Sampled October 25-27, 2000

Sample Number		29371	23786	23570	29370	23785	29372	23787	23571	29373	23788	23572	29374	23789	29385	23838	
Sampling Location		EL-001	EL-001	EL-001	EL-002	EL-002	EL-003	EL-003	EL-003	EL-004	EL-004	EL-004	EL-005	EL-005	EL-006	EL-006	
Date Sampled		25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	27-Oct	25-Oct	26-Oct	25-Oct	26-Oct	
Volume (Liters)		480	480	480	480	480	480	480	480	480	480	480	480	480	480	480	
						Concen	tration in m	icrogram/c	ubic meter	(µg/m³)							
Metal	Range																MDL*
Calcium	ND-6.0					6.0											5.2
Chromium	ND-1.3		1.3			0.67		0.98			1.0			0.30	0.27		0.26
Iron	ND-6.4	1.3	5.3		1.5	5.9	1.5	5.0	1.6		6.4	1.6	2.1	5.5	3.4	4.0	1.3
Lead	ND-0.3	0.14	0.15			0.14	0.16	0.18		0.30	0.19	0.11	0.11	0.28	0.14	0.10	0.10
Manganese	ND-3.0		1.6	0.33		2.2		1.5	0.42		3.0	0.56		0.97	0.36	2.0	0.26
Zinc	ND-2.2		0.62					1.1	2.2		0.84						0.52

EL-001	Elementary School at SW Corner
EL-002	Elementary School at Entrance
EL-003	Backyard of E House on Etruria Street
EL-004	Side yard of C House on Etruria Street near garage
EL-005	Elementary School Playground
EL-006	Bank of Ohio River across from 1911 Ohio Avenue

^{*:} MDL based on 480 Liters of sample volume

Average Media Blank Concentration >= MDL subtracted from all sample results

TABLE 9
SUMMARY TABLE FOR INORGANIC ACIDS DETECTED IN AIR - ROUND #1
Dates Sampled October 25 - 27, 2000

Sample Number		29381	23781	23578	29380	23780	29382	23782	23579	29383	23783	23580	29384	23784	29391	23835	
Sampling Location	on	EL-001	EL-001	EL-001	EL-002	EL-002	EL-003	EL-003	EL-003	EL-004	EL-004	EL-004	EL-005	EL-005	EL-006	EL-006	
Date Collected		25-Oct	25-Oct	27-Oct	25-Oct	25-Oct	25-Oct	25-Oct	27-Oct	25-Oct	25-Oct	27-Oct	25-Oct	25-Oct	25-Oct	25-Oct	
Volume (Liters)		120	120	120	76.8	120	120	120	120	120	93.5	120	120	120	120	120	
	olume (Liters) 120 120					C	oncentrati	on in millig	ram/cubic	meter (mg	g/m³)						
Compound	Range																MDL
Sulfuric Acid	ND-0.056		0.046					0.043			0.055			0.056		0.056	0.043

EL-001	Elementary School at SW Corner
EL-002	Elementary School at Entrance
EL-003	Backyard of E House on Etruria Street
EL-004	Side yard of C House on Etruria Street near garage
EL-005	Elementary School Playground
EL-006	Bank of Ohio River across from 1911 Ohio Avenue

TABLE 10
SUMMARY TABLE FOR VOCs DETECTED IN AIR - ROUND #2
Dates Sampled November 1-2, 2000

Sample Number		24790	24814	24832	24791	24815	24833	24792	24816	24834	24793	24817	24835	24794	24818	24836	24795	24819	24837	
Sampling Location		E-L001	E-L001	E-L001	EL-002	EL-002	EL-002	EL-003	EL-003	EL-003	EL-004	EL-004	EL-004	EL-005	EL-005	EL-005	EL-006	EL-006	EL-006	
Date Collected		1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	
Volume (Liters)		480	480	480	480	480	480	345	480	477	480	244	480	330	480	480	480	480	480	
							С	oncentra	tion in pa	arts per b	illion by	volume (ppbv)							
Compound	Range																			MDL*
Benzene	0.8J-1.7	0.9J	0.9J	1.4	1.0J	1J	1.1J	1J	1.1J	1.2J	1.7	1.3J	1.2J	1.2J	1J	1.4	0.8J	0.8J	1.3	1.3
n-Heptane	ND-0.32J					0.23J					0.32J			0.3J	0.25J		0.24J			0.9
Toluene	1.6-6.4	1.6	2.2	2.4	2.7	2.6	1.8	1.9	2.6	2.2	4.6	3.3	2.0	3.2	6.4	6.2	2.0	1.7	2.3	1.1
Ethylbenzene	ND-0.52J			0.22J		0.25J				0.19J	0.52J					0.25J	0.24J		0.2J	0.9
para-Xylene	0.51J-1.9	0.8J	0.94	0.74J	1.1	0.89J	0.51J	0.8J	1.0	0.6J	1.9	1.1	0.6J	1.4	1.1	0.83J	0.9J	0.82J	0.67J	0.9
ortho-Xylene	ND-0.73J		0.32J	0.27J	0.4J				0.36J	0.2J	0.73J		0.2J	0.51J	0.5J	0.35J	0.4J	0.3J	0.26J	1.0
Cumene	ND-0.2J															0.2J				8.0
Mesitylene	ND-1.0										0.29J				1.0	1.0				8.0
D-Limonene	ND-0.7				0.14J				0.15J			0.32J			0.61J	0.7				0.7
Trimethyl benzene isomer	ND-4.3															4.3				NA ¹

J: The value is below the method detection limit and is estimated

*: MDL based on 480 liters of sample volume NA¹: MDL not avaliable; results are estimated

EL-001	Elementary School at SW Corner
EL-002	Elementary School at Entrance
EL-003	Backyard of E House on Etruria Street
EL-004	Side yard of C House on Etruria Street near garage
EL-005	Elementary School Playground
EL-006	Bank of Ohio River across from 1911 Ohio Avenue

TABLE 11
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #2
Dates Sampled November 1-2, 2000

Sample Number		24806	24826	24844	24807	24827	24845	24808	24828	24846	24809	24829	24847	24810	24830	24811	24831	24849	
Sampling Location		EL-001	EL-001	EL-001	EL-002	EL-002	EL-002	EL-003	EL-003	EL-003	EL-004	EL-004	EL-004	EL-005	EL-005	EL-006	EL-006	EL-006	
Date Sampled		1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	1-Nov	2-Nov	2-Nov	
Volume (Liters)		480	480	480	480	480	480	480	480	480	480	480	480	480	480	480	480	480	
							Co	ncentrati	on in mic	rogram/c	ubic met	er (µg/m³)						
Metal	Range																		MDL*
Calcium	ND-26	10	6.5	9.1	6.1		6.7	5.6		7.1	18	5.6	26	8.4		5.4	7.6	7.4	5.2
Iron	ND-5.9	1.8	2.3	4.6	1.8	1.6	4.4	1.5	1.9	4.1	2.3	2.1	5.8	2.1	1.7	2.6	5.9	5	1.3
Lead	ND-0.34		0.12	0.29			0.34	0.28		0.17		0.15	0.19				0.12	0.19	0.10
Manganese	ND-7.3		1.3	2.2		1	2.4		1.4	1.9	0.37	2	2		0.49	0.41	7.3	2	0.26
Zinc	ND-1.6	0.77	0.55	1.6	0.54		1.6			1.5	0.63	0.6	1.4		0.58	0.58	0.6	1.5	0.52

Sampling Locations:

EL-001 Elementary School at SW Corner
 EL-002 Elementary School at Entrance
 EL-003 Backyard of E House on Etruria Street
 EL-004 Side yard of C House on Etruria Street near garage
 EL-005 Elementary School Playground
 EL-006 Bank of Ohio River across from 1911 Ohio Avenue

^{*:} MDL based on 480 liters of sample volume

Average Media Blank Concentration >=MDL subtracted from all sample results

TABLE 12
SUMMARY TABLE FOR INORGANIC ACIDS DETECTED IN AIR - ROUND #2
Dates Sampled November 1-2, 2000

	24798	24820	24838	24799	24821	24839	24800	24822	24840	
ion	EL-001	EL-001	EL-001	EL-002	EL-002	EL-002	EL-003	EL-003	EL-003	
	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	
	120	120	120	120	120	120	120	91.82	93.5	
			Conce	ntration in	milligram/c	ubic meter	(mg/m³)			
Range										MDL*
ND-0.054			0.054			0.046				0.043
	on Range	EL-001 1-Nov 120	on EL-001 EL-001 1-Nov 2-Nov 120 120 Range	on EL-001 EL-001 EL-001 1-Nov 2-Nov 2-Nov 120 120 120 Concer Range	EL-001 EL-001 EL-001 EL-002 1-Nov 2-Nov 2-Nov 1-Nov 120 120 120 120 Concentration in	EL-001 EL-001 EL-001 EL-002 EL-002 1-Nov 2-Nov 2-Nov 1-Nov 2-Nov 120 120 120 120 120 120 Concentration in milligram/o	EL-001 EL-001 EL-001 EL-002 E	EL-001 EL-001 EL-001 EL-002 EL-002 EL-003	EL-001 EL-001 EL-001 EL-002 EL-002 EL-003 E	EL-001 EL-001 EL-001 EL-002 EL-002 EL-003 E

Sample Number	24801	24823	24841	24802	24824	24842	24803	24825	24843	
Sampling Location	EL-004	EL-004	EL-004	EL-005	EL-005	EL-005	EL-006	EL-006	EL-006	
Date Collected	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	1-Nov	2-Nov	2-Nov	
Volume (liters)	120	120	120	120	120	99.75	78	78	120	
			Concer	ntration in	milligram/c	ubic meter	(mg/m³)			
Compound										MDL*
Sulfuric Acid			0.043						0.053	0.043

*: MDL based on 120 liters of sample volume

MDL: Method Detection Limit

EL-001	Elementary School at SW Corner
EL-002	Elementary School at Entrance
EL-003	Backyard of E House on Etruria Street
EL-004	Side yard of C House on Etruria Street near garage
EL-005	Elementary School Playground
EL-006	Bank of Ohio River across from 1911 Ohio Avenue

TABLE 13
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #3
Dates Sampled November 7-12, 2000

Sample Number		EL-001	EL-001A	EL-001B	EL-001C	EL-002	EL-002A	EL-002B	EL-002C	EL-003	EL-003A	EL-003B	EL-003C	
Date Sampled		7-Nov	8-Nov	11-Nov	12-Nov	7-Nov	8-Nov	11-Nov	12-Nov	7-Nov	8-Nov	11-Nov	12-Nov	
Volume (Liters)		18556.5	17133.1	17500	22129.5	18559.5	20134.5	18212	21587	18096	20323.5	19035	21593	
						Concentra	ation in microg	ram/cubic met	ter (µg/m³)					
Metal	Range													MDL*
Aluminum	ND-0.8	0.57	0.39			0.44	0.51			0.44	0.57			0.067
Antimony	ND-0.005		0.003				0.004				0.004			0.003
Arsenic	ND-0.0087	0.003	0.006			0.004	0.006			0.004	0.007			0.003
Barium	ND-0.061	0.025	0.031			0.024	0.036			0.022	0.04			0.007
Calcium	ND-19	4.9	1.9	0.15	0.27	4.8	2.6	0.25	0.22	4.3	2.8	0.32	0.3	0.13
Chromium	ND-0.16	0.042	0.044			0.045	0.084	0.007		0.064	0.11			0.007
Cobalt	ND-0.027													0.013
Copper	ND-0.07	0.024	0.02			0.028	0.029			0.028	0.03			0.013
Iron	ND-9.6	2	2	0.076	0.11	2.3	2.6	0.072	0.079	2.4	3.1	0.11	0.13	0.034
Lead	ND-0.061	0.039	0.034	0.005	0.008	0.041	0.039	0.003	0.006	0.042	0.045	0.005	0.008	0.003
Manganese	ND-22	1.8	1.3		0.008	3	2			3.4	2.4	0.007	0.01	0.007
Nickel	ND054					0.02	0.015			0.018	0.018			0.013
Selenium	ND-0.04	0.011	0.029			0.009	0.037			0.009	0.04			0.003
Vanadium	ND-0.02													0.013
Zinc	ND-0.56	0.3	0.22		0.062	0.33	0.3		0.039	0.34	0.31	0.02	0.078	0.013

Sample Number	EL-004	EL-004A	EL-004B	EL-004C	EL-005	EL-005A	EL-005B	EL-005C	EL-006	EL-006A	EL-006B	EL-006C	
Date Sampled	7-Nov	8-Nov	11-Nov	12-Nov	7-Nov	8-Nov	11-Nov	12-Nov	7-Nov	8-Nov	11-Nov	12-Nov	
Volume (Liters)	10549.5	17670	4800	13950	18855	19534.5	19080	20934	16226	19170	18600	17340	
					Concentra	ation in microg	ram/cubic me	ter (µg/m³)					
Metal													MDL*
Aluminum	0.8	0.59			0.37	0.45			0.74	0.62			0.067
Antimony		0.004				0.003				0.005			0.003
Arsenic		0.007				0.006			0.012	0.009			0.003
Barium	0.042	0.04			0.02	0.038			0.053	0.061			0.007
Calcium	19	3.1		0.91	4.5	2.8	0.24	0.31	8.6	4	0.23	0.26	0.13
Chromium	0.094	0.1	0.03		0.021	0.048			0.16	0.13	0.007		0.007
Cobalt									0.027				0.013
Copper	0.037	0.036			0.023	0.023			0.07	0.036			0.013
Iron	3.1	3.1	1.5	0.16	1.5	2.3	0.092	0.12	9.6	6.3	0.11	0.14	0.034
Lead	0.051	0.043		0.006	0.033	0.041	0.004	0.009	0.061	0.048	0.003	0.009	0.003
Manganese	4.1	2.4		0.015	1.4	1.5		0.009	22	7.6	0.01	0.012	0.007
Nickel	0.026	0.015							0.054	0.02			0.013
Selenium	0.012	0.04			0.006	0.035			0.011	0.039			0.003
Vanadium										0.02			0.013
Zinc	0.24	0.32			0.26	0.25	0.014	0.059	0.56	0.36	0.015	0.031	0.013

Average Media Blank Concentration >=MDL subtracted from all sample results

ilpiilig Luca	uons.
EL-001	Roof of Administration Building
EL-002	Elementary School at Entrance
EL-003	Backyard of E House on Etruria Street
EL-004	Side yard of C House on Etruria Street near garage
EL-005	Elementary School Playground
El-006	Bank of Ohio River across from 1911 Ohio Avenu

^{*:} MDL based on 22129.5 Liters of sample volume

TABLE 14 SUMMARY TABLE FOR DIOXINS DETECTED IN AIR - ROUND #4 Dates Sampled November 13-17, 2000

Sample No. 0180- Sampling Location Date collected Volume (cubic meter)		-12 WTI 14-N 369.	-1 ov	-14 WTI 15-N 391.	l-1 lov	-15: WTI- 16-N- 361.8	-1 ov	-16 WTI 17-N 350.	-1 ov	-12 WT 14-N 408	l-2 lov	-13 WTI 15-N 390.	-2 ov	-14 WT 16-N 383	l-2 lov	-15 WT 17-N 383.	l-2 lov
,						C	oncentrat	ion in pico	gram/cul	bic meter (pg/m³)						
Compound	MDL pg	Amount	EMPC	Amount	EMPC	Amount	EMPC			Amount		Amount	EMPC	Amount	EMPC	Amount	EMPC
Compound	<u> </u>																
2,3,7,8-TCDD	10		0.0103				0.0152		0.0123		0.0098			0.2516			
1,2,3,7,8-PeCDD	50	0.0078 J		0.0071 J		0.0478 J		0.0128 J		0.0068 J		0.0072 J		1.3835		0.0047 J	
1,2,3,4,7,8-HxCDD	50	0.0081 J		0.0071 J		0.0553 J		0.0126 J		0.0064 J				1.2086			
1,2,3,6,7,8-HxCDD	50	0.0138 J			0.0138	0.0934 J		0.0200 J		0.0115 J			0.0154	2.4302			0.0115
1,2,3,7,8,9-HxCDD	50		0.0097	0.0130 J		0.1000 J		0.0337 J		0.0090 J		0.0200 J		2.5921		0.0076 J	
1,2,3,4,6,7,8-HpCDD	50	0.1727		0.2455		1.3404		0.4623 J		0.1462		0.2917		43.0708		0.1407 J	
OCDD	100	0.5927		1.5210		4.5602		3.3391		0.5307		2.4307		172.0222		0.4847 J	
2,3,7,8-TCDF	10	0.0106 J		0.0051 J			0.0072		0.0068		0.0073			0.0433			0.0081
1,2,3,7,8-PeCDF	50	0.0143 J				0.0099 J		0.0074 J			0.0083	0.0041 J		0.1049	J	0.0055 J	
2,3,4,7,8-PeCDF	50	0.0227 J		0.0075 J		0.0149 J			0.0120			0.0054 J		0.1906		0.0091 J	
1,2,3,4,7,8-HxCDF	50	0.0217 J			0.0061	0.0177 J			0.0131	0.0108 J		0.0069 J		0.2897		0.0096 J	
1,2,3,6,7,8-HxCDF	50	0.0219 J			0.0069	0.0171 J			0.0126				0.0059			0.0083 J	
2,3,4,6,7,8-HxCDF	50	0.0225 J				0.0191 J			0.0140	0.0120 J		0.0056 J		0.2415			0.0099
1,2,3,7,8,9-HxCDF	50							0.0051 J						0.1013 、	J	0.0052	
1,2,3,4,6,7,8-HpCDF	50	0.0606 J		0.0163 J		0.0316 J		0.0414 J		0.0396 J		0.0317 J		1.0206		0.0328 J	
1,2,3,4,7,8,9-HpCDF	50	0.0084 J				0.0111 J			0.0083					0.3002			
OCDF	100	0.0349 J		0.0151 J		0.0721 J		0.0362 J		0.0330 J		0.0281 J		1.4200			0.0276
Total TCDDs		0.0119	0.0203			0.0995	0.2073		0.0382	0.0159				4.3593	4.4376		
Total PeCDDs		0.0644	0.0752	0.0510	0.0587	0.7904	0.8844	0.0457	0.1199	0.0342	0.0531	0.0328	0.0399	14.5919		0.0287	0.0328
Total HxCDDs		0.1083	0.1383	0.1051	0.1189	1.6361	1.7494	0.3168		0.0514	0.0831	0.0450	0.1039	28.4528	28.4528	0.0076	0.0719
Total HpCDDs		0.3735		0.5538		4.1732		1.0560		0.3253		0.7215		93.4506		0.3023	
Total TCDFs		0.3139	0.3518	0.0944		0.1719	0.2421	0.1578	0.2106	0.1477	0.1739	0.0435	0.0425	2.6077	2.6365	0.1071	0.1345
Total PeCDFs		0.2300		0.0664		0.1299	0.199	0.1073	0.1418		0.1215	0.0384	0.0527	2.3545	2.3989	0.0688	0.1006
Total HxCDFs		0.1686		0.0110	0.0240		0.1785	0.0713	0.1113		0.0866		0.0466		2.6365	0.0584	0.0683
Total HpCDFs		0.1034		0.0163	0.0248	0.2006		0.0542	0.0771	0.0396	0.0660	0.0458		3.2368	3.4457	0.0542	
TEQ (ND=0)		0.0290		0.0140		0.0813		0.2226		0.0179		0.0141		2.3702		0.0128	
TEQ (ND=1/2)		0.0344		0.0186		0.0843		0.0237		0.0237		0.0184		2.3702		0.0164	
TEQ EMPC (ND=0)		0.0298		0.0156		0.0970		0.0454		0.0191		0.0156		2.3702		0.0149	
TEQ EMPC (ND=1/2)		0.0403		0.0197		0.0973		0.0454		0.0293		0.0194		2.3702		0.0180	

J: The value is below the method detection limit and is estimated

EMPC: Estimated maximum possible concentration

TEQ: Toxicity Equivalents

MDL: Method Detection Limit

Sampling Locations:

WTI-1: Roof of Administration Building

WTI-2: Water Treatment Plant

WTI-3 West Virginia DEP site, Lawrenceville, WV

WTI-4: Roof of East Liverpool City Hall

TABLE 14 (continued) SUMMARY TABLE FOR DIOXINS DETECTED IN AIR - ROUND #4 Dates Sampled November 13-17, 2000

Sample No. 0180-		-12		-13		-150		-15		-14	
Sampling Location		WTI		WTI		WTI-		WTI		WTI	
Date collected		14-N 373.:		15-N 417.4		16-No 427.4		17-N 424.0		15-N 246	
Volume (cubic meter)		3/3	20							240	.ა
	MDI	Amount	EMPC	Amount	EMPC	picogram/	EMPC			Amount	EMPC
Compound	pg	Amount	EIVIPC	Amount	EIVIPC	Amount	EIVIPC	Amount	EIVIPC	Amount	EIVIPC
Compound	pg										
2,3,7,8-TCDD	10						0.0101		0.0090	0.1218	
1,2,3,7,8-PeCDD	50					0.0218 J		0.0050 J		0.9135	
1,2,3,4,7,8-HxCDD	50					0.0227 J			0.0059	0.5562	
1,2,3,6,7,8-HxCDD	50		0.0075			0.0377 J			0.0113	5.6029	
1,2,3,7,8,9-HxCDD	50		0.0080			0.0435 J		0.0092 J		3.4064	
1,2,3,4,6,7,8-HpCDD	50	0.1294 J		0.0589 J		0.6129		0.1257		39.4641	
OCDD	100	0.3724		0.1945		1.5322		0.4103		37.8806	
2,3,7,8-TCDF	10					0.0096 J			0.0028	0.1673	
1,2,3,7,8-PeCDF	50	0.0032 J				0.0073 J			0.0040	0.1616 J	
2,3,4,7,8-PeCDF	50	0.0046 J		0.0048 J		0.0147 J			0.0050	0.2818	
1,2,3,4,7,8-HxCDF	50	0.0080 J			0.0043	0.0133 J			0.0066	0.1518 J	
1,2,3,6,7,8-HxCDF	50		0.0070	0.0046 J			0.0131		0.0061	0.1957 J	
2,3,4,6,7,8-HxCDF	50	0.0070 J				0.0112 J		0.0061 J		0.1969 J	
1,2,3,7,8,9-HxCDF	50								0.0026		
1,2,3,4,6,7,8-HpCDF	50	0.0265 J		0.0127 J		0.0423 J		0.0222 J		0.7389	
1,2,3,4,7,8,9-HpCDF	50					0.0087 J		0.0045 J		0.1657 J	
OCDF	100	0.0217 J		0.0101 J		0.0372 J		0.0212 J		0.8973	
Total TCDDs					0.0053	0.0538	0.0936		0.0163	3.4145	3.5242
Total PeCDDs			0.0174	0.0086	0.0053	0.0536	0.0936	0.0050	0.0163		9.6224
Total HxCDDs			0.0174	0.0060		0.7930	0.4211	0.0030		39.9513	9.0224
Total HpCDDs		0.2786	0.0730	0.0201		2.0094	2.0094	0.0390	0.0300	65.3674	
Total TCDFs		0.2780		0.1337		0.2302	0.2643	0.2600	0.0941	8.4044	8.4856
Total PeCDFs		0.0303	0.0571	0.0287	0.0249	0.2302	0.2043	0.0004	0.0341	3.3942	3.5363
Total HxCDFs		0.0356	0.0371	0.0207	0.0243	0.1029	0.1170	0.0450	0.0547	1.7783	0.0000
Total HpCDFs		0.0330	0.0400	0.0107	0.0220	0.1023	0.0959	0.0230	0.0547	2.2940	
Total Tipobl 3		0.0723		0.0121		0.0317	0.0000	0.0420		2.2070	
TEQ (ND=0)		0.0056		0.0038		0.0395		0.0061		2.1965	
TEQ (ND=1/2)		0.0110		0.0079		0.0428		0.0078		2.2006	
TEQ EMPC (ND=0)		0.0080		0.0043		0.0519		0.0212		2.1965	
TEQ EMPC (ND=1/2)		0.0134		0.0081		0.0522		0.0212		2.2006	

J: The value is below the method detection limit and is estimated

EMPC: Estimated maximum possible concentration

TEQ: Toxicity Equivalents
MDL: Method Detection Limit

Sampling Locations:

WTI-1: Roof of Administration Building

WTI-2: Water Treatment Plant

WTI-3 West Virginia DEP site, Lawrenceville, WV

WTI-4: Roof of East Liverpool City Hall

Table 15
SUMMARY TABLE FOR PAHs DETECTED IN AIR - ROUND #4
Dates Sampled November 13-17, 2000

Sample #0180-	-127	-140	-152	-161	-125	-136	-148	-156	-129	-139	-151	-159	-143	
Sampling Location	WTI-1	WTI-1	WTI-1	WTI-1	WTI-2	WTI-2	WTI-2	WTI-2	WTI-3	WTI-3	WTI-3	WTI-3	WTI-5	
Date Collected	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	15-Nov	
Volume (cubic meter)	368.21	385.54	359.38	347.47	387.15	375.89	386.52	371.36	321	377.17	357.47	373.19	219	
					Con	centration in	n parts per	trillion by v	olume (ppt	v)				
Compound														MDL*
Naphthalene	14	14	43	17	11	8.1	15	14	7.1	7.6	22	17	29	0.50
2-Methylnaphthalene	3.6	3.0	12	4.1	4.1	1.8	7.1	4.1	1.7	1.7	3.9	2.8	6.5	0.45
Acenaphthylene			1.3										1.9	0.42
Acenaphthene		0.45	1.1		0.70		0.58	0.51			0.71	0.72	0.80	0.42
Fluorene	0.48	0.46	1.2	0.47	0.53		0.57	0.40			0.58	0.63	1.08	0.39
Phenanthrene	1.0	1.0	3.3	0.91	0.96	0.62	1.2	0.81		0.40	1.2	1.2	3.1	0.36
Anthracene			0.69											0.36
Fluoranthene			1.1				0.31				0.37		1.0	0.32
Pyrene			0.98										1.5	0.32
Chrysene			0.36											0.28
Benzo(a)anthracene			0.39											0.28
Benzo(b)fluoranthene			0.32											0.26

*: MDL based on 380 cubic meters of sample volume

Sampling Locations:

WTI-1: Roof of Administration Building

WTI-2: Water Treatment Plant

WTI-3 West Virginia DEP site, Lawrenceville, WV

WTI-4: Roof of East Liverpool City Hall

TABLE 16
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #4
Dates Sampled November 13-17, 2000

Sample Number		0180-402	24873	24878	0180-400	24850	24870	24875	0180-403	24851	24871	24876	0180-401	24852	24872	24877	
Sampling Location		WTI-1	WTI-1	WTI-1	WTI-2	WTI-2	WTI-2	WTI-2	WTI-3	WTI-3	WTI-3	WTI-3	WTI-5	WTI-5	WTI-5	WTI-5	
Date Sampled		14-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	
Volume (Liters)		14559.2	11973.1	16632	15626.6	12962.7	15309	14962.5	13158	14507	17483.75	15785	13729.5	8388	7479	7410	
						Conce	entration	in microg	ram/cubic	meter (µ	g/m³)						
Metal	Range																MDL*
Aluminum	ND-1.1	0.21	0.46	0.34	0.13		1.1				0.23	0.083	0.12	0.23	0.27		0.071
Antimony	ND-0.0081									0.0081							0.0029
Arsenic	ND-0.014						0.0096							0.011	0.014		0.0029
Barium	ND-0.11	0.0094	0.023	0.011			0.11				0.0083						0.0071
Calcium	0.23-19	0.94	3.9	1.5	2.3	0.28	19	0.46	0.23	0.35	1.1	0.54	0.66	2.1	2.5	1.4	0.14
Chromium	ND-5.8		0.063		0.15		5.8				0.021		0.065	0.033	0.12	0.096	0.0071
Cobalt	ND-0.047						0.047										0.014
Copper	ND-0.19	0.027	0.029	0.021	0.064	0.19	0.16	0.16	0.021	0.18	0.039						0.014
Iron	0.12-20	0.3	1.4	0.77	0.91	0.13	20	0.18	0.12	0.12	0.62	0.13	0.59	1.2	1.6	0.84	0.036
Lead	0.0038-0.018	0.018		0.012	0.0067	0.0059		0.0083	0.008	0.0038		0.0086	0.01	0.016		0.014	0.0029
Manganese	ND-9.5	0.018	0.38	0.051	0.16	0.03	9.5	0.047			0.12	0.015	0.4	1.7	1.6	0.53	0.0071
Magnesium	ND- 2.1						2.1										0.71
Nickel	ND-0.65				0.029		0.65										0.014
Selenium	ND-0.011	0.0039	0.01		0.0037		0.0073	0.0062	0.0068		0.0094	0.0092	0.0056		0.011	0.0071	0.0029
Vanadium	ND-0.04						0.04										0.014
Zinc	0.02-0.16	0.065	0.088	0.038	0.027	0.024	0.16	0.02	0.027	0.021	0.066	0.029	0.035	0.12	0.075	0.037	0.014

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Locations:

WTI-1: Roof of Administration Building

WTI-2: Water Treatment Plant

WTI-3: West Virginia DEP site, Lawrenceville, WV

WTI-4: Roof of East Liverpool City Hall - Sampling apparatus interfered with police communication equipment, no sampling conducted at this location

^{*:} MDL based on 17483.75 Liters of sample volume

TABLE 16 (continued) SUMMARY TABLE FOR METALS DETECTED IN AIR (PM MASS RESULTS) - ROUND #4 Dates Sampled November 13-17, 2000

Sample Number Sampling Location Date Sampled Volume (cubic meter PM Mass Type)	110265W WTI-1 13-14 Nov 22.03 PM10	110268Z WTI-1 13-14 Nov 22 PM2.5	110124K WTI-1 14-15 Nov 22.03 PM10	110528O WTI-1 14-15 Nov 22.01 PM2.5	1105768 WTI-1 15-16 Nov 22.02 PM10	1105724 WTI-1 15-16 Nov 22 PM2.5	1102941 WTI-1 16-17 Nov 22.03 PM10	1102952 WTI-1 16-17 Nov 22.01 PM2.5	110270T WTI-2 13-14 Nov 22 PM10	110271U WTI-2 13-14 Nov 22 PM2.5	110126M WTI-2 14-15 Nov 22 PM10	110530U WTI-2 14-15 Nov 22 PM2.5	1105746 WTI-2 15-16 Nov 22 PM10	1105713 WTI-2 15-16 Nov 22 PM2.5	1102963 WTI-2 16-17 Nov 22 PM10	1104710 WTI-2 16-17 Nov 22 PM2.5
							Concenti	ation in mi	crogram/cu	bic meter (μg/m³)						
Metal	Range																
Aluminum	ND-1.4	0.064	·	0.19	·	0.34	·	0.34	·	0.15		0.019		1.4		0.074	
Antimony	ND-0.0054							0.00041		0.0016		0.00041		0.0046			
Arsenic	ND-0.012	0.00082				0.0031		0.0016		0.0028		0.00056		0.0017		0.0011	
Barium	ND-0.11	0.0084		0.0033		0.013		0.042		0.032		0.011		0.110		0.018	
Calcium	0.10-7.3	0.26		0.32		1.3		0.63		1.2		0.18		7.3		0.32	
Chromium	ND-18	0.23		0.0017		0.25		0.0041		2.2		0.0065		18		0.025	
Copper	ND-0.0.24	0.0051		0.0031		0.0054		0.0033		0.024		0.023		0.018		0.024	
Iron	ND-16	0.32		0.13		0.88		0.36		1.6		0.096		16		0.17	
Lead	ND-0.062	0.015		0.0051		0.015		0.0028		0.0061		0.0034		0.019		0.0060	
Manganese	ND-3.4	0.03		0.0066		0.21		0.023		0.14		0.016		3.4		0.025	
Magnesium	ND- 0.35					0.0035		0.0046		0.050				0.35			
Nickel	ND-0.38	0.0042				0.0064		0.00062		0.030		0.00015		0.38		0.00056	
Selenium	ND-0.0099	0.0066				0.0031		0.0054		0.0099		0.0013		0.0025		0.0048	
Vanadium	ND-0.0023					0.00051											
Zinc	ND-0.060	0.046		0.010		0.049		0.013		0.023		0.010		0.060		0.0098	
PM2.5 Mass conc.	7-23		19		11		19		15		17		9		23		13
PM10 Mass conc.	10-147	25		16		34		25		32		11		147		18	
Chromium VI (ng/m³)	ND-1.58	0.64												1.58			

Sampling Locations:

WTI-1: Roof of Administration Building WTI-2: Water Treatment Plant

TABLE 16 (continued) SUMMARY TABLE FOR METALS DETECTED IN AIR (PM MASS RESULTS) - ROUND #4 Dates Sampled November 13-17, 2000

Sample Number Sampling Location Date Sampled Volume (cubic meter) PM Mass Type	1102690 WTI-3 13-14 Nov 22 PM10	110129P WTI-3 13-14 Nov 21.997 PM2.5	108356P WTI-3 14-15 Nov 21.5 PM10	110527Z WTI-3 14-15 Nov 21.563 PM2.5	1105779 WTI-3 15-16 Nov 22 PM10	1104743 WTI-3 16-17 Nov 21.7 PM10	110266X WTI-4 13-14 Nov 22.01 PM10	110267Y WTI-4 13-14 Nov 22.03 PM2.5	110125L WTI-4 14-15 Nov 22.01 PM10	110531V WTI-4 14-15 Nov 22.03 PM2.5	1105757 WTI-4 15-16 Nov 22.02 PM10	1105702 WTI-4 15-16 Nov 22.03 PM2.5	1104732 WTI-4 16-17 Nov 22.03 PM10	110470Z WTI-4 16-17 Nov 22.03 PM2.5	1105735 WTI-5 13-14 Nov 21.997 PM10	1105735 WTI-5 14-15 Nov 21.997 PM10	1105735 WTI-5 15-16 Nov 21.997 PM10	1105735 WTI-5 16-17 Nov 21.998 PM10
							Con	centration in	microgram/	cubic meter	(µg/m³)							
Metal																		
Aluminum	0.039		0.0038		0.073	0.062	0.030		0.0046		0.17		0.091				0.20	0.22
Antimony			0.0051						0.00062		0.0023						0.0054	0.0012
Arsenic	0.000050				0.0020	0.0013	0.00031				0.0031		0.0021				0.012	0.0042
Barium	0.011		0.031		0.025	0.021	0.015		0.020		0.027		0.023				0.035	0.018
Calcium	0.10		0.13		0.40	0.29	0.54		0.15		1.2		0.66				1.5	1.3
Chromium	0.0010		0.00011		0.052	0.002	0.0021		0.00025		0.17		0.0023				0.74	0.69
Cobalt																		
Copper	0.0043		0.0034		0.014	0.0021	0.0024		0.0017		0.0037		0.0029				0.0036	0.0021
Iron	0.11		0.064		0.37	0.12	0.1677		0.077		0.60		0.14				1.4	1.3
Lead	0.0072		0.0040		0.0081	0.0041	0.0130		0.0045		0.062		0.023				0.0084	0.0042
Manganese	0.0041		0.0045		0.049	0.011	0.0067		0.0035		0.11		0.011				0.45	1.2
Magnesium							0.0011		0.0076		0.010							0.0057
Nickel	0.0016		0.00063		0.0024	0.00026	0.0010		0.00025		0.0047		0.00072				0.015	0.0096
Selenium	0.0066		0.00089		0.0049	0.0064	0.0078		0.0011		0.0032		0.0052				0.0034	0.0045
Vanadium					0.0023						0.00082							
Zinc	0.016		0.0083		0.033	0.010	0.019		0.0080		0.048		0.023				0.041	0.017
PM2.5 Mass conc.		12		7				13		8.0		15		12				
PM10 Mass conc.	16		10	•	18	16	19	.0	11	2.0	26	.0	19				35	29
Chromium VI (ng/m³)															0.75		0.63	

Sampling Locations: WTI-3: West Virginia DEP site, Lawrenceville, WV WTI-4: Roof of East Liverpool City Hall WTI-5: End of Walter Street

TABLE 17 SUMMARY TABLE OF VOCs DETECTED IN AIR - ROUND #4 November 13-17, 2000

Sample Number Sampling Location		0180-502 WTI-1	24854 WTI-1	24859 WTI-1grab	24884 WTI-1grab	0180-500 WTI-2	24855 WTI-2	24880 WTI-2	24886 WTI-2	
Date Collected		11/14/00	11/15/00	11/15/00	11/16/00	11/14/00	11/15/00	11/16/00	11/17/00	
			Con	centration in	parts per b	illion by vo	lume (ppbv))		
Compound	MDL									
Chloromethane	0.73				0.78					
Freon 12	0.73									
Freon 11	0.73									
Methylene Chloride	0.73	37	9.2 B			1.8	6.6 B	3.6		Sampling Locations:
Toluene	0.73					0.86		2.4		WTI-1: Roof of Administration Building
Chlorobenzene	0.73					1				WTI-2: Water Treatment Plant
Acetone	2.9					3.7				WTI-3: West Virginia DEP site, Lawrenceville, WV
Hexane	2.9									WTI-5: End of Walter Street
Trichloroethene	0.73									
Ethanol	2.9									
m,p-xylene	0.73			1						
Total TICs:		26		22.5	4.9	17.4		22		<u> </u>

Sample Number Sample Location	0180-503 WTI-3	24856 WTI-3	24881 WTI-3	24887 WTI-3	0180-501 WTI-5	24882 WTI-5	24888 WTI-5	24857 City Hall	24858 City Hall grab	24883 City Hall grab
Date Collected	11/14/00	11/15/00	11/16/00	11/17/00	11/14/00	11/16/00	11/17/00	11/15/00	11/15/00	11/16/00
				Concenti	ration in pai	rts per billio	on by volum	e (ppbv)		
Compound										
Chloromethane										
Freon 12							0.78			
Freon 11					2.4					
Methylene Chloride	67	20 B	1.8		2.8	1200		59 B		2.2
Toluene					3.2					8
Chlorobenzene										
Acetone										
Hexane	65		3.7			46				120
Trichloroethene				0.88						
Ethanol				0.00						3.4
m,p-xylene										.
Total TICs:	21				41		8.4			10

B: The analyte was found in the blank TICs: Tentatively Identified Compounds

TABLE 18
SUMMARY TABLE FOR TOTAL DIOXIN TEQs IN AIR - ROUND #4
Dates Sampled November 14-17, 2000

Sample No. 0180-	-126	-141	-153	-160	-124	-137	-149	-157	-128	-138	-150	-158	-142
Sampling Location	WTI-1	WTI-1	WTI-1	WTI-1	WTI-2	WTI-2	WTI-2	WTI-2	WTI-3	WTI-3	WTI-3	WTI-3	WTI-5
Date Collected	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	14-Nov	15-Nov	16-Nov	17-Nov	15-Nov
Volume (cubic meter)	369.51	391.85	361.83	350.39	408.9	390.83	383.09	383.78	373.26	417.45	427.49	424.03	246.3
					Concen	tration in p	oicogram/c	ubic meter	(pg/m³)				
													_
TEQ EMPC (ND=1/2MDL)*	0.041	0.020	0.097	0.045	0.029	0.019	2.370	0.018	0.013	0.008	0.052	0.021	2.201

^{*:} Toxicity Equivalent Factor using estimated maximum possible concentration and assuming concentrations for non-detects of half the Method Detection Limit

Sampling Locations:

WTI-1: Roof of Administration Building

WTI-2: Water Treatment Plant

WTI-3: West Virginia DEP site, Lawrenceville, WV

TABLE 19
Literature Values, Average Total Toxicity Equivalents for Dioxins*

Location	TEQ, pg/m ³	Comments
Germany	0.12	
Japan, average for background areas (villages)	0.07	Japan: Annual averages, sampled twice in summer and twice
Japan, average for medium-sized cities	1.36	winter (1996-1997)
Japan, average for large cities	1.02	
Netherlands	0.08	
Sweden	0.024	
United Kingdom	0.4	
United States	0.09	

^{*} Tamaki, B. posting to dioxin listerv, dioxin-1@essential.org., May 14-16, 1998.

TABLE 20 Chemical Composition of PM_{2.5} Samples Dates Sampled November 13-16, 2000

Sampling Location	East Liverpool City Hall	Lawrenceville WV	East Liverpool Elementary School	Water Treatment Plant	Walter Street
			Percent by weight (%)	
Component					
Sulfate ion	26	30	22	23	22
Organic Carbon	27	23	32	23	35
Nitrate ion	17	17	19	15	16
Ammonium ion	13	14	14	11	12
Sum of all Elements	13	13	9	23	10
Elemental Carbon	3	2	4	4	4
Potassium/Sodium ions	0.18	0.21	0.29	0.24	0.29

TABLE 21
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15752	15759	15776	15790	15805	15720	15694	15629	15653	15675	28479	
Sampling Location		WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	
Date Sampled		5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		7463	6032.5	7201	7248	7264	7200	7323	6940	7443	7050	7169	
					Concent	ration in mi	crogram/cเ	ubic meter ((µg/m³)				
Metal	Range												MDL*
Aluminum	ND - 0.30				0.27						0.30	0.27	0.17
Arsenic	ND - 0.030				0.030								0.0067
Barium	ND - 0.024											0.024	0.017
Calcium	ND - 1.8			0.93	1.8	0.6	0.54	0.38			1.5	1.6	0.33
Chromium	ND - 0.033								0.033	0.022	0.027		0.017
Copper	ND - 0.037											0.037	0.033
Iron	ND - 4.6				1.3	0.68		4.6			4.1	0.30	0.084
Lead	ND - 0.029				0.016	0.0094	0.022	0.024	0.027	0.0075	0.017	0.029	0.0067
Manganese	ND - 0.10			0.024	0.060		0.066	0.07			0.10	0.038	0.017
Selenium	ND - 0.012	0.01				0.0069		0.01				0.012	0.0067
Sodium	ND - 2.2						2.1				2.2		1.7
Zinc	ND - 0.48				0.092		0.082	0.069	0.054	0.037	0.046	0.48	0.033

J: The value is below the method detection limit and is estimated

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-1 Roof of Administration Building

^{*:} MDL based on 7463 Liters of sample volume

TABLE 21 (continued) SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5 Dates Sampled December 5-10, 2000

Sample Number		15750	15758	15774	15788	15801	15802	15721	15722	15695	15684	15625	15626	15649	15650	15671	15672	28475	28476	
Sampling Location		WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2A	WTI-2	WTI-2A	WTI-2	WTI-2A	WTI-2	WTI-2A	WTI-2	WTI-2A	WTI-2	WTI-2A	WTI-2	WTI-2A	
Date Sampled		5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	7-Dec	7-Dec	8-Dec	8-Dec	8-Dec	8-Dec	9-Dec	9-Dec	9-Dec	9-Dec	10-Dec	10-Dec	
Volume (Liters)		7187	6316	7178	7242	7303	720	7140	717	7344	720	6920	692	7420	720	7010	702	7511	720	
								Co	ncentration	in microgr	am/cubic n	neter (µg/n	1 ³)							
Metal	Range																			MDL*
Aluminum	ND - 4.3							0.34		0.45	4.3				2.3			0.24		0.17
Barium	ND - 0.023									0.023										0.017
Calcium	ND - 1.5		0.56	0.47		0.5				1.5						0.80		0.93		0.33
Chromium	ND - 0.44	0.031								0.02			0.20	0.033	0.35			0.035	0.44	0.017
Copper	ND - 0.54																	0.038	0.54	0.033
Iron	ND - 25	3.8		0.60	0.50	1.6				8.0	1.5					1.4		1.4	25	0.083
Lead	ND - 0.096	0.0086			0.017	0.0089				0.013	0.076	0.015		0.0083		0.0093		0.027	0.096	0.0067
Manganese	ND - 0.80	0.066	0.038	0.026	0.034	0.037		0.29	0.32	0.62				0.020		0.80	0.58	0.076	0.34	0.017
Selenium	ND - 0.009	0.009			0.0069	0.0079				0.0082										0.0067
Sodium	ND - 2.3															1.9		2.3		1.7
Vanadium	ND - 0.037									0.037										0.033
Zinc	ND - 0.70				0.07		0.54	0.038		0.077		0.039				0.042		0.45	0.7	0.033

MDL: Method Detection Limit

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-2 Water Treatment Plant

WTI-2A PM10 Location at Water Treatment Plant

^{*:} MDL based on 7511 Liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15710	15724	15687	15630	15654	15677	15985	
Sampling Location		WTI-4	WTI-4	WTI-4	WTI-4	WTI-4	WTI-4	WTI-4	
Date Sampled		7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	720	705	698	792	703	720	
			Concent	ration in m	icrogram/cı	ubic meter ((µg/m³)		
Metal	Range								MDL*
Aluminum	ND - 2.7			2.7					1.6
Chromium	ND - 0.45				0.45			0.23	0.16
Copper	ND - 0.38						0.38		0.32
Iron	ND - 5.5	4.9			5.5				0.79
Manganese	ND - 1.2	1.2							0.16
Silver	ND - 0.23							0.23	0.16
Sodium	ND - 25						25		16
Zinc	ND - 0.68	0.66		0.41			0.68	0.58	0.32

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-4 Roof of East Liverpool City Hall

^{*:} MDL based on 792 liters of sample volume

TABLE 21 (continued)

SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5

Dates Sampled December 5-10, 2000

Sample Number		15754	15760	15775	15789	15803	15804	15725	15726	15693	15688	15627	15628	15651	15652	15673	15674	28477	28478	
Sampling Location		WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5D	WTI-5	WTI-5D	WTI-5	WTI-5D	WTI-5	WTI-5D	WTI-5	WTI-5D	WTI-5	WTI-5D	WTI-5	WTI-5D	
Date Sampled		5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	7-Dec	7-Dec	8-Dec	8-Dec	8-Dec	8-Dec	9-Dec	9-Dec	9-Dec	9-Dec	10-Dec	10-Dec	
Volume (Liters)		100	6340	1840	7250	5350	720	2210	717	7140	715	6820	690	3280	738	5396	700	6760	720	
								Co	ncentration	in microg	am/cubic n	neter (µg/m	1 ³)							
Metal	Range																			MDL*
Aluminum	ND - 2.0				0.40										2.0			0.25		0.17
Barium	ND - 0.028				0.028															0.017
Calcium	ND - 9.2		1.1	2.1	9.2	2.6				0.45		0.87				0.51		1.1		0.34
Chromium	ND - 0.47		0.28	0.23	0.10	0.039			0.24			0.18	0.47	0.063	0.23		0.29			0.017
Iron	ND - 43		7.6	1.2	4.3	3.3			43			2.0	2.4				24		14	0.086
Lead	ND - 0.33		0.16	0.029	0.091	0.013			0.078	0.0089		0.13	0.33	0.052		0.012	0.092	0.025	0.073	0.0069
Manganese	ND - 8.9		2.3	0.88	1.1	0.6	0.62	0.066	0.88	0.2		8.3	8.9	0.27		0.048	0.61	0.035	0.32	0.017
Nickel	ND - 0.071		0.071																	0.034
Selenium	ND - 0.011					0.0098				0.011								0.0092		0.0069
Zinc	ND - 0.71		0.15		0.16		0.71	0.11		0.054		0.10						0.39	0.50	0.034

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-5 End of Walter Street

WTI-5D Walter Street Duplicate

^{*:} MDL based on 7250 liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15756	15761	15777	15791	15711	15727	15692	15631	15655	15676	15984	
Sampling Location		WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	
Date Sampled		5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		5379	6090	3520	5100	7200	3250	4920	6940	1574	6269	7200	
					Concent	ration in mi	crogram/cเ	ubic meter (μg/m³)				
Metal	Range												MDL*
Aluminum	ND - 0.53		0.34					0.53			0.30	0.28	0.17
Barium	ND - 0.017											0.017	0.017
Calcium	ND - 3.6		3.6	0.74	1.2			0.61	0.43		2.8	1.8	0.35
Chromium	ND - 0.084				0.084		0.06					0.035	0.017
Iron	ND - 8.6		0.39		8.6	0.74	2.1	1.9	0.17		1.1	0.59	0.087
Lead	ND - 0.041		0.012		0.040	0.013	0.024	0.021	0.038	0.041	0.014	0.035	0.0069
Manganese	ND - 0.12		0.077		0.12		0.072	0.057	0.036		0.10	0.052	0.017
Selenium	ND - 0.013	0.011						0.013				0.012	0.0069
Sodium	ND - 7.6						7.6				3.1		1.7
Zinc	ND - 0.56				0.10	0.051	0.15	0.073	0.083		0.078	0.56	0.035

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-6 Port Authority Parking Area

^{*:} MDL based on 7200 Liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15766	15784	15728	15685	15620	15644	15666	28470	
Sampling Location		WTI-7	WTI-7	WTI-7	WTI-7	WTI-7	WTI-7	WTI-7	WTI-7	
Date Sampled		6-Dec	6-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	720	720	720	690	720	700	720	
			Co	ncentration	in microgr	am/cubic n	neter (µg/m	3)		
Metal	Range									MDL*
Chromium	ND - 0.29			0.25		0.29	0.18			0.17
Copper	ND - 0.37							0.37		0.35
Iron	ND - 14		12	14		1.7	1.1	4.7		0.87
Manganese	ND - 0.33		0.23	0.33		0.29		0.18		0.17
Sodium	ND - 19							19		17
Zinc	ND - 0.56								0.56	0.35

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-7 West End of Ohio Avenue

^{*:} MDL based on 720 Liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15767	15785	15797	15690	15621	15645	15667	28471	
Sampling Location		WTI-8	WTI-8	WTI-8	WTI-8	WTI-8	WTI-8	WTI-8	WTI-8	
Date Sampled		6-Dec	6-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	720	720	1080	693	720	700	720	
			Coi	ncentration	in microgr	am/cubic n	neter (µg/m	³)		
Metal	Range									MDL*
Aluminum	ND - 2.1						2.1			1.2
Chromium	ND - 0.22				0.22					0.12
Iron	ND - 46	1.3	46	15	16	3.8	21			0.58
Lead	ND - 0.083				0.083					0.046
Manganese	ND - 3.6	0.18	3.6	0.48	0.74	0.20	0.32	1.0		0.12
Zinc	ND - 0.64		0.4	0.64	0.24				0.40	0.23

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-8 Route 39 E at Monument

^{*:} MDL based on 1080 Liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15768	15786	15798	15730	15686	15622	15646	15668	28472	
Sampling Location		WTI-9	WTI-9	WTI-9	WTI-9	WTI-9	WTI-9	WTI-9	WTI-9	WTI-9	
Date Sampled		6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	720	720	720	684	694	756	740	754	
				Concent	ration in mi	icrogram/cเ	ubic meter ((µg/m³)			
Metal	Range										MDL*
Calcium	ND - 5.6		5.6								3.3
Chromium	ND - 0.28			0.18			0.28		0.25		0.17
Iron	ND - 24	2.6	11	21	6.3		7.8		24		0.83
Lead	ND - 0.34		0.086	0.072				0.34			0.066
Manganese	ND - 3.9	0.29	3.9	1.8	3.5		0.25	0.33	0.44		0.17
Sodium	ND - 17								17		17
Zinc	ND - 0.67			0.67						0.35	0.33

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-9 Route 39 E at Entrance

^{*:} MDL based on 756 Liters of sample volume

TABLE 21 (continued)
SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15769	15787	15799	15731	15689	15623	15647	15669	28473	
Sampling Location		WTI-10	WTI-10	WTI-10	WTI-10	WTI-10	WTI-10	WTI-10	WTI-10	WTI-10	
Date Sampled		6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	720	720	720	720	730	720	702	711	
				Concent	ration in mi	crogram/cเ	ubic meter	(µg/m³)			
Metal	Range										MDL*
Chromium	ND - 0.59						0.59				0.17
Iron	ND - 33	1.0	6.6	2.9		3.5	33	6.8		12	0.87
Lead	ND - 0.073			0.073			0.07				0.069
Manganese	ND - 1.3		1.3	0.33	1.3		1.3	0.17		0.18	0.17
Zinc	ND - 0.70		0.65	0.7						0.39	0.35

Average Media Blank Concentration >=MDL subtracted from all sample results

Sampling Location:

WTI-10 East End of S. H. Bell

^{*:} MDL based on 730 Liters of sample volume

TABLE 21 (continued) SUMMARY TABLE FOR METALS DETECTED IN AIR - ROUND #5 Dates Sampled December 5-10, 2000

Sample Number		15800	15732	15691	15624	15648	15670	28474	
Sampling Location		WTI-11	WTI-11	WTI-11	WTI-11	WTI-11	WTI-11	WTI-11	
Date Sampled		7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	356	720	693	756	701	720	
			Concent	ration in m	icrogram/cı	ubic meter	(µg/m³)		
Metal	Range								MDL*
Aluminum	ND - 3.5			3.5					1.7
Manganese	ND - 2.0	0.29	2.0		0.30				0.17
Sodium	ND - 23						23		17
Zinc	ND - 0.86	0.58	0.86				0.45	0.40	0.33

MDL: Method Detection Limit

Sampling Location:

WTI-11 Cause Avenue at East end of S. H. Bell

^{*:} MDL based on 756 Liters of sample volume

Average Media Blank Concentration >=MDL subtracted from all sample results

TABLE 22
SUMMARY TABLE FOR VOCs DETECTED IN AIR - ROUND #5
Dates Sampled December 5-10, 2000

Sample Number		15753	15763	15772	15794	15735	15808	15681	15634	15658	15740	15982	15751	15762	15770	15792	15806	15733	15683	15632	15656	15678	15980	
Sampling Location	n	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-1	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	WTI-2	
Date Sampled		5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	5-Dec	5-Dec	6-Dec	6-Dec	7-Dec	7-Dec	8-Dec	8-Dec	9-Dec	9-Dec	10-Dec	
Volume (Liters)		720	634	714	720	720	720	712	729	219	705	720	720	631	155	720	720	713	720	693	720	701	717	
										Concentr	ation in p	arts per bi	llion by v	olume (pp	bv)									
Compound	Range																							MDL*
Carbon Tetrachloric	de ND-0.1 J																			0.1 J				0.5
Benzene	ND-0.7 J	0.3	0.2 J	0.2 J	0.4 J	0.4 J	0.3 J		0.4 J			0.6 J	0.3 J			0.2 J	0.3 J	0.2 J	0.3 J	0.5 J	0.3 J	0.3 J		0.9
Toluene	ND-0.9	0.3	0.4 J	0.3 J	0.3 J	0.4 J	0.3 J		0.8		8.0	8.0	0.2 J	0.21 J		0.2 J	0.2 J		0.4 J	0.5 J	0.3 J	0.3 J		0.7
Tetrachloroethene	ND-0.2 J																							0.4
para-Xylene	ND-0.4 J								0.2 J		0.3 J	0.34 J								0.2 J				0.6
ortho-Xylene	ND-0.1 J																							0.7
Sample Number																								
Sampling Location	n	15755 WTI-5	15764 WTI-5	15771 WTI-5	15793 WTI-5	15807 WTI-5	15734 WTI-5	15680 WTI-5	15633 WTI-5	15657 WTI-5	15679 WTI-5	15981 WTI-5	15757 WTI-6	15765 WTI-6	15773 WTI-6	15795 WTI-6	15809 WTI-6	15736 WTI-6	15682 WTI-6	15635 WTI-6	15659 WTI-6	15741 WTI-6	15983 WTI-6	
	n																							
Sampling Location	n	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-5	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	WTI-6	
Sampling Location Date Sampled	n	WTI-5 5-Dec	WTI-5 5-Dec	WTI-5 6-Dec	WTI-5 6-Dec	WTI-5 7-Dec	WTI-5 7-Dec	WTI-5 8-Dec	WTI-5 8-Dec	WTI-5 9-Dec 720	WTI-5 9-Dec 702	WTI-5 10-Dec	WTI-6 5-Dec 720	WTI-6 5-Dec 610	WTI-6 6-Dec 711	WTI-6 6-Dec	WTI-6 7-Dec	WTI-6 7-Dec	WTI-6 8-Dec	WTI-6 8-Dec	WTI-6 9-Dec	WTI-6 9-Dec	WTI-6 10-Dec	
Sampling Location Date Sampled	n Range	WTI-5 5-Dec	WTI-5 5-Dec	WTI-5 6-Dec	WTI-5 6-Dec	WTI-5 7-Dec	WTI-5 7-Dec	WTI-5 8-Dec	WTI-5 8-Dec	WTI-5 9-Dec 720	WTI-5 9-Dec 702	WTI-5 10-Dec 720	WTI-6 5-Dec 720	WTI-6 5-Dec 610	WTI-6 6-Dec 711	WTI-6 6-Dec	WTI-6 7-Dec	WTI-6 7-Dec	WTI-6 8-Dec	WTI-6 8-Dec	WTI-6 9-Dec	WTI-6 9-Dec	WTI-6 10-Dec	MDL*
Sampling Location Date Sampled Volume (Liters)	Range	WTI-5 5-Dec	WTI-5 5-Dec	WTI-5 6-Dec	WTI-5 6-Dec	WTI-5 7-Dec	WTI-5 7-Dec	WTI-5 8-Dec	WTI-5 8-Dec	WTI-5 9-Dec 720	WTI-5 9-Dec 702	WTI-5 10-Dec 720	WTI-6 5-Dec 720	WTI-6 5-Dec 610	WTI-6 6-Dec 711	WTI-6 6-Dec	WTI-6 7-Dec	WTI-6 7-Dec	WTI-6 8-Dec	WTI-6 8-Dec	WTI-6 9-Dec	WTI-6 9-Dec	WTI-6 10-Dec	MDL*
Sampling Location Date Sampled Volume (Liters) Compound	Range	WTI-5 5-Dec	WTI-5 5-Dec	WTI-5 6-Dec	WTI-5 6-Dec	WTI-5 7-Dec	WTI-5 7-Dec	WTI-5 8-Dec	WTI-5 8-Dec	WTI-5 9-Dec 720	WTI-5 9-Dec 702	WTI-5 10-Dec 720	WTI-6 5-Dec 720	WTI-6 5-Dec 610	WTI-6 6-Dec 711	WTI-6 6-Dec	WTI-6 7-Dec	WTI-6 7-Dec	WTI-6 8-Dec	WTI-6 8-Dec	WTI-6 9-Dec	WTI-6 9-Dec	WTI-6 10-Dec	
Sampling Location Date Sampled Volume (Liters) Compound Carbon Tetrachloric	Range de ND-0.1 J	WTI-5 5-Dec 720	WTI-5 5-Dec 635	WTI-5 6-Dec	WTI-5 6-Dec 720	WTI-5 7-Dec 720	WTI-5 7-Dec 896	WTI-5 8-Dec 715	WTI-5 8-Dec 691	WTI-5 9-Dec 720 Concentr	WTI-5 9-Dec 702 ation in p	WTI-5 10-Dec 720 arts per bi	WTI-6 5-Dec 720	WTI-6 5-Dec 610 olume (pp	WTI-6 6-Dec 711 bbv)	WTI-6 6-Dec 720	WTI-6 7-Dec	WTI-6 7-Dec 790	WTI-6 8-Dec 706	WTI-6 8-Dec 694	WTI-6 9-Dec 792	WTI-6 9-Dec 704	WTI-6 10-Dec 720	0.5
Sampling Location Date Sampled Volume (Liters) Compound Carbon Tetrachloric Benzene	Range de ND-0.1 J ND-0.7 J	WTI-5 5-Dec 720	WTI-5 5-Dec 635	WTI-5 6-Dec	WTI-5 6-Dec 720	WTI-5 7-Dec 720	WTI-5 7-Dec 896	WTI-5 8-Dec 715	WTI-5 8-Dec 691	WTI-5 9-Dec 720 Concentr	WTI-5 9-Dec 702 ation in p	WTI-5 10-Dec 720 arts per bi	WTI-6 5-Dec 720	WTI-6 5-Dec 610 olume (pp	WTI-6 6-Dec 711 (bv)	WTI-6 6-Dec 720	WTI-6 7-Dec	WTI-6 7-Dec 790	WTI-6 8-Dec 706	WTI-6 8-Dec 694	WTI-6 9-Dec 792	WTI-6 9-Dec 704	WTI-6 10-Dec 720	0.5 0.9
Sampling Location Date Sampled Volume (Liters) Compound Carbon Tetrachloric Benzene Toluene	Range de ND-0.1 J	WTI-5 5-Dec 720	WTI-5 5-Dec 635 0.5 J 0.4 J	WTI-5 6-Dec	WTI-5 6-Dec 720	WTI-5 7-Dec 720	WTI-5 7-Dec 896	WTI-5 8-Dec 715	WTI-5 8-Dec 691	WTI-5 9-Dec 720 Concentr	WTI-5 9-Dec 702 ation in p	WTI-5 10-Dec 720 arts per bi	WTI-6 5-Dec 720	WTI-6 5-Dec 610 olume (pp	WTI-6 6-Dec 711 (bv)	WTI-6 6-Dec 720	WTI-6 7-Dec	WTI-6 7-Dec 790	WTI-6 8-Dec 706	WTI-6 8-Dec 694	WTI-6 9-Dec 792	WTI-6 9-Dec 704	WTI-6 10-Dec 720	0.9 0.7

J: The value is below the method detection limit and is estimated MDL: Method Detection Limit

Sampling Locations:

WTI-1 Roof of Administration Building
WTI-2 Water Treatment Plant
WTI-5 End of Walter Street
WTI-6 Port Authority Parking Area

^{*:} MDL based on 896 Liters of sample volume

Table 23
SUMMARY TABLE FOR METALS IN SOIL - ROUND #1
Date Sampled October 26, 2000
(results based on dry weight)

Sample Number		23900	23901	23902	23903	23904	23905	23906	23907	23908	23909		_
Sampling Location		School	School	School	Playground	Playground	Playground	Snack Shack	HomePlate	Center Field	Bank of Ohio River		Eastern US
Date Sampled		26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct	26-Oct		Background
Percent Solids		85.2	79.5	84.7	87.4	86.2	90.4	83.3	88.6	88.9	86.2		Data**
						Cond	entration in m	nilligram/kilogra	m (mg/kg)				
Metal	Range											MDL*	
Aluminum	6330-13900	6660	13900	8550	7130	6990	6330	8670	8170	9070	8800	22.1	33000
Arsenic	11.3-36.6	13.5	14.5	14.5	13.8	36.6	12.9	11.6	11.3	11.5	16	1.1	3-12
Barium	77.9-243	92.9	125	125	105	103	77.9	118	78.8	243	112	22.1	15 - 600
Beryllium	0.8-1.1	0.85	1.1	0.88	0.81	0.85	0.8	0.98	0.91	1	0.89	0.55	0 - 1.75
Calcium	896-26500	2920	3440	1470	3910	9010	9790	2890	26500	3000	896	553	130 -35000
Chromium	12.4-27	14.1	26.2	15	14.4	13.9	20.6	19.9	12.4	18.7	27	1.1	15-40
Cobalt	7.2-11.4	8.4	11.4	9.7	8.3	10.6	8.5	10.1	7.8	9.2	7.2	5.5	2.5-60
Copper	16.7-38.6	20.6	38.6	21	19.8	23.8	22.9	24.8	16.7	23.6	19.7	2.8	1-50
Iron	23000-65200	65200	40300	26800	29500	40000	28400	27500	23000	26200	25700	11.1	2000-550000
Lead	20.1-1220	35.6	64.3	42.1	35.7	38.4	27.4	41.1	20.1	31.7	1220	0.33	4-500
Potassium	ND-1290	616	948	620	626	607	809	731	737	1290		553	8500-43000
Magnesium	1040-4900	1160	1600	1490	2170	4900	2720	1830	4640	2620	1040	553	100-5000
Manganese	485-968	833	944	886	899	934	700	863	695	485	968	1.7	50-5000
Mercury	ND-0.19	0.089	0.12	0.079	0.069	0.087	0.057	0.19		0.074	0.07	0.037	0.001-0.2
Nickel	15.1-24.9	15.2	24.9	18.1	17.1	19.3	21.6	22.5	15.1	20.2	22.4	4.4	0.5-25
Vanadium	15.3-22.4	20	21.7	17.8	16.9	17.4	15.3	18.3	15.5	22.4	20.1	5.5	1-300
Zinc	82.9-220	110	164	104	220	155	154	119	83.3	82.9	110	3.3	9-50

Matrix/Matrix Spike Duplicate (MS/MSD) percent recoveries for sample number 23905 was greater than 125 percent for Ca (196, 160%), Cr (474%), Cu (168%), and Zn (126%). All results for these metals are estimated.

Sample number 23905 was used for serial dilution. Following elements were greater than or equal to 50 times the instrument detection limit and exceeded the less than or equal to 10% difference (D) criteria: As (12.2%), Ba (10.1%), Co (11.3%), Cr (11.4%), Mn (10.3%), Ni (1590%), and Zn (10.7%). All results for these metals are estimated.

^{*:} MDL based on 90.4 percent solids

^{**:} New York Department of Environmental Conservation, Jan 24, 1994

Table 24
SUMMARY TABLE FOR DIOXINS DETECTED IN SOIL-ROUND #1
Date Sampled October 26, 2000
(results based on dry weight)

Sample No.		23	840	238	341	238	342	238	343	238	344	238	345	238	346	238	347	238	48	23	849
Sampling Location		Scl	hool	Sch	nool	Sch	nool	Playg	round	Playgi	round	Playgi	round	Snack	Shack	Home	eplate	Center	Field	Bank of C	Ohio River
Date sampled			6/00	10/2		10/2		10/2		10/2		10/2	6/00		6/00		6/00	10/20			26/00
Percent Solids		87	7.3	79	.8	83	.5	87	'.5	89		8		82	2.4	88	3.4	87	.5	7	75
												in parts p									
		Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC
Compound	MDL*	0.400.1		0.010		0.000.1			0.400		0.000		0.454		0.47	0.050.1			0.450	0.500.1	
2,3,7,8-TCDD		0.466 J	4.00	0.849		0.288 J			0.198		0.222		0.154	0.07.1	0.47	0.253 J			0.159	0.522 J	0.04
1,2,3,7,8-PeCDD	2.5	4 00 1	1.36	1.45 J		0.578 J			0.607	0.050.1	0.416	0.000 1	0.442	0.97 J			0.332	0.050.1	0.293	0.00	2.91
1,2,3,4,7,8-HxCDD	2.5	1.02 J		1.33 J		0.387 J			0.351	0.259 J		0.293 J		0.71 J			0.169	0.253 J		3.03	
1,2,3,6,7,8-HxCDD				3.88			1.25	0.982 J		0.699 J		0.755 J		1.97 J		0.42 J		0.616 J		7.82	
1,2,3,7,8,9-HxCDD	2.5	2.01 J		3.07		0.947 J			0.694	0.536 J		0.773 J		1.7 J		0.465 J		0.695 J		7.66	
1,2,3,4,6,7,8-HpCDD	2.5	39.2		87.2		25.7		14.8		12.3		16		45.4		8.61		15.9		205	
OCDD	4.9	469		1010		363		191		165		268		787		112		535		1890	
2,3,7,8-TCDF	0.19	1.56		2.42		1.09		0.794		0.766		0.52		1.56		0.319 J		0.48		3.1	
1,2,3,7,8-PeCDF		0.844 J		1.37 J		0.563 J		0.477 J		0.411 J		0.305 J		0.857 J		0.115 J		0.255 J		1.91 J	
2,3,4,7,8-PeCDF	2.5			4.02		1.81 J		1.91 J		1.2 J		0.639 J		2.79		0.226		0.655 J		10.1	
1,2,3,4,7,8-HxCDF	2.5	1.69 J		3.15		1.31 J		0.894 J		0.904 J			0.576	2.05 J		0.197 J		0.45 J		5.54	
1,2,3,6,7,8-HxCDF	2.5			2.56		0.96 J		0.877 J		0.711 J		0.502 J		1.52 J		0.26 J		0.399 J		4.27	
2,3,4,6,7,8-HxCDF	2.5	1.62 J		2.89		1.2 J		1.23 J		0.891 J		0.571 J		1.67 J		0.224 J		0.491 J		7.3	
1,2,3,7,8,9-HxCDF		0.426 J		0.709 J		U		U		U		U		U		U		U		U	
1,2,3,4,6,7,8-HpCDF	2.5			27.3		11.5		5.84		5.32		4.1		15.4		1.59 J		3.12		97.4	
1,2,3,4,7,8,9-HpCDF	2.5	0.87 J		1.84 J		0.679 J		0.447 J		0.392 J		0.293 J		0.939 J		U		0.22 J		3.56	
OCDF	4.9	55		78		37.9		12.8		11.8		9.76		33.1		4.81		5.93		330	
Total TCDDs		7.54	9.11	13		4.57	4.62	5.54	5.74	2.33	2.9	1.33	1.640	5.88	6.56	0.554	0.847	1.52	2	6.86	7.9
Total PeCDDs		9.7	11.4	11.9	13.3	5.25	5.96	3.82	4.43	4.1	4.5	2.19	2.64	7.21	8.95	1.57	2.2	2.1	2.4	15.7	16.2
Total HxCDDs		29.2	32.2	35	36.5	12.40	13.7	9.43	10.7	8.38		8.5	9	21.3	21.3	5.4	5.8	7.17	8.1	64.5	
Total HpCDDs		102		200	200	66.9	66.9	34.5	34.5	27.1	27.1	38	38	103	103	21.4	21.4	34.5	34.5	397	
Total TCDFs		22	22.1	39.3	40.4	16.60	17.6	12.2	14	11.1	12.1	6.46	7.81	19.9	22.7	1.8	2.4	6.12	7.4	52	55
Total PeCDFs		14.5		26.7		11.10	19.6	10.7		7.6		4.8	7.57	15.8	28.4	1.4	2.7	3.3	6.6	53	
Total HxCDFs		21.2		43.6		17.1		15.1		10.9	11.1	6.39	6.97	25.7		2.6	2.9	5.53	5.8	116	
Total HpCDFs		25.4	26.3	64.6	65.8	27.6	28.3	11.9		10.5		8.43		30	30.9	3.5		6.93		225	
TEQ (ND=0)		3.82		7.90		2.88		1.87		1.45		1.16		4.48		0.83		1.42		14.8	
TEQ (ND=1/2)		3.84		7.90		2.91		1.96		1.43		1.10		4.48		0.03		1.48		14.9	
TEQ (ND=1/2) TEQ EMPC (ND=0)		4.5		7.90		3.00		2.48		1.88		1.59		4.46		0.755		1.72		16.3	
TEQ EMPC (ND=0) TEQ EMPC (ND=1/2)		4.5 4.5		7.90		3.02		2.40		1.89		1.59		4.93		0.958		1.74		16.3	
ILG EINIFU (IND=1/2)		4.5		7.90		3.02		2.43		1.03		1.0		4.50		0.500		1.74		10.3	

J: The value is below the method detection limit and is estimated

U: Not detected at Method Detection Limit (MDL)

^{*:} MDL based on 89.4 percent solids

EMPC: Estimated maximum possible concentration

TEQ: Toxicity Equivalents

Table 25
SUMMARY TABLE FOR METALS IN SOIL - ROUND #4
Date Sampled November 15, 2000
(results based on dry weight)

Sample Number		SE-1A	SE-2A	SE-3A	SE-4A	WTI-5A	WTI-5C		
Sampling Location		Elem School	Elem School	Elem School	Elem School	Walter Street	Walter Street		Eastern US
Date Sampled		15-Nov	15-Nov	15-Nov	15-Nov	15-Nov	15-Nov		Background
Percent Solids		84.99	81.05	83.25	82.74	88.14	91.63		Data**
			Co	oncentration in	milligram/kilog	gram (mg/kg)			
Metal	Range							MDL*	
Aluminum	4900-9300	8800	9300	8900	9200	5800	4900	17	33000
Arsenic	13-18	13	18	17	13	15	14	0.97	3-12
Barium	76-130	130	120	120	130	76	88	0.96	15 - 600
Berylium	0.73-1.0	0.98	1.0	0.86	0.94	0.83	0.73	0.48	0 - 1.75
Cadmium	ND-0.93	0.93	0.83			0.71		0.48	0.1-1
Calcium	2600-12000	2600	3800	4700	3300	2800	12000	48	130 -35000
Chromium	18-60	28	28	18	20	48	60	0.48	15-40
Cobalt	10-11	11	11	10	11	11	11	0.96	2.5-60
Copper	22-29	29	29	25	28	26	22	0.96	1-50
Iron	30000-42000	30000	34000	30000	32000	38000	42000	9.6	2000-550000
Lead	45-65	65	61	45	54	45	63	3.8	4-500
Magnesium	1500-2300	1600	2000	2300	1900	1500	2100	48	100-5000
Manganese	1000-1600	1100	1200	1100	1000	1500	1600	0.96	50-5000
Mercury	ND-0.13	0.13	0.12	0.085	0.096	0.11		0.04	.001-0.2
Nickel	20-24	22	24	20	21	24	22	0.96	0.5-25
Potassium	710-950	930	920	890	950	760	710	190	8500-43000
Vanadium	15-21	19	21	18	19	16	15	1.9	1-300
Zinc	110-220	220	200	120	140	120	110	1.9	9-50

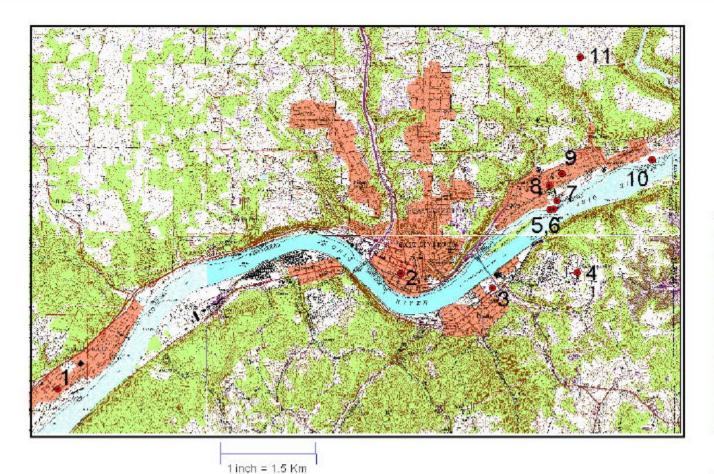
^{*:} Method detection limit based on 91.63 percent solids

^{**:} New York Department of Environmental Conservation, Jan 24, 1994

Table 26
SUMMARY TABLE FOR DIOXINS IN SOIL - ROUND #4
Date Sampled November 15, 2000
(results based on dry weight)

Sample Number Sampling Location Percent Solids		SE-1 Elem Se 83.	chool	SE-2B pol Elem School 80.7		SE-3B Elem School 83.5		SE-4B Elem School 82.2		WTI-5B Walter Street 86.8		WTI-5D Walter Street 91.4	
							in parts pe	r trillion (pp					
		Amount	EMPC .	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC	Amount	EMPC
Compound	MDL*												
2,3,7,8-TCDD	0.49		0.521		0.416		0.245		0.260		0.176		0.140
1,2,3,7,8-PeCDD	2.5	1.25 J		0.661 J		0.321 J		0.332 J		0.281 J		0.255 J	
1,2,3,4,7,8-HxCDD	2.5	1.34 J		0.647 J		0.359 J			0.308	0.236 J		0.269 J	
1,2,3,6,7,8-HxCDD	2.5	3.37		1.76 J		0.796 J		0.82 J		0.612 J		0.563 J	
1,2,3,7,8,9-HxCDD	2.5	2.98		1.68 J		0.914 J		0.708 J		0.481 J			0.506
1,2,3,4,6,7,8-HpCDD	2.5	84.3		38.3		17.5		17.9		12.1		10.8	
OCDD	4.9	728		328		209		196		112		93.2	
2,3,7,8-TCDF	2.5	3.62		0.631		0.431 J		0.482 J		0.188 J			0.104
1,2,3,7,8-PeCDF	2.5	4.69		0.455 J		0.268 J		0.37 J		0.168 J		0.100 J	
2,3,4,7,8-PeCDF	2.5	2.77		0.99 J		0.751 J		1.02 J		0.672 J		0.247 J	
1,2,3,4,7,8-HxCDF	2.5	5.40		1.15 J		0.61 J		0.858 J		0.539 J		0.419 J	
1,2,3,6,7,8-HxCDF	2.5	2.55		1.24 J		0.454 J		0.624 J		0.404 J		0.299 J	
2,3,4,6,7,8-HxCDF	2.5	2.60		1.40 J		0.581 J		0.898 J		0.576 J		0.344 J	
1,2,3,7,8,9-HxCDF	2.5	1.27 J		0.196 J				0.204 J					
1,2,3,4,6,7,8-HpCDF	2.5	22.9		12.8		4.64		6.00		4.91		4.58	
1,2,3,4,7,8,9-HpCDF	2.5	2.30 J		0.59 J		0.338 J		0.344 J		0.305 J		0.298 J	
OCDF	4.9	62.9		16.2		11.6		12.2		11.9		11.2	
Total TCDDs		6.76	7.76	4.28	4.70	1.7	2.11	1.61	2.11	0.217	0.393		0.140
Total PeCDDs		12.2	12.8	6.83	7.31	2.95		2.24	3.94	0.744	1.14	0.82	0.823
Total HxCDDs		38.4	32.5	23.7	25.2	8.00	8.19	7.87	8.64	4.21	4.32	3.69	4.38
Total HpCDDs		226		98.6		41.0		45.0		23.5		20.6	
Total TCDFs		27.5	28.6	9.97	10.1	5.90	6.58	8.52	9.87	2.11	3.93	1.3	1.45
Total PeCDFs		20.6	28.7	8.2	8.3	4.70	7.09	6.5	10.2	2.9	6.23	1.4	2.38
Total HxCDFs		38.5		18.4	18.7	7.13	7.42	10.1		7.37	7.55	4.88	5.04
Total HpCDFs		55.6		23.3		10.9		12.7	13		11.9		
TEQ (ND=0)		6.44		2.58		1.41		1.60		1.09		0.707	
TEQ (ND=1/2)		6.47		2.60		1.45		1.65		1.12		0.741	
TEQ EMPC (ND=0)		6.96		3.00		1.65		1.90		1.26		0.908	
TEQ EMPC (ND=1/2)		6.96		3.00		1.66		1.90		1.27		0.912	

EMPC: Estimated maximum possible concentration


TEQ: Toxicity Equivalents

^{*:} Method detection limit is based on 91.4 percent solids

J: The value is below the method detection limit and is estimated

Figures

Previous Air Sampling Locations

Site	Location	State
1	Wellsville	ан
2	Oty Hall	ОН
3	Chester	w
4	Lawrenceville	W
5	Plant - West 1	ОН
6	Plant - West 2	ОН
7	Plant - East	OH
В	5dhool	ОН
9	Firehouse	ан
10	Treatment Plant	ан
11	Stagecoach	OH

Map created using USGS topographic map. Map depicts monitor sites in East Liverpool, OH and Chester, WV area.

data: g:|ancet.orgon|actot.dis .agr file: g:|ancet.orgon|actot._ano;aeon|actot,eng_das.agr U.S. EPA Environmental Response Team Center Response Engineering and Analytical Contract 69-C99-223 W.O.#R1A00180 Figure 1
Previous Air Sampling Locations
Chester, West Virginia and
East Liverpool, Ohio

Air Sampling Locations

Data: g:\arceteeprojects\180

.apr file: g: (arretemprojectrio_0000_SPrejectrio80_alp.apr

W * E

Legend

- October 25 November 12, 3000 Sampling Points
- November 13 December 10, 2000 Sampling Points

U.S. EPA ENVIRONMENTAL RESPONSE TEAM CENTER Response Engineering and Analytical Contract 68-C99-223 W.A. # R1A00160 Figure 2 Air Sampling Locations WTI Incinerator Site East Liverpool, Ohio

Soil Sampling Locations

Bata: g:\amoviewpcodects\t80

.agr file: g:\arcviceprejects\0_MEAC_SPrejects\180_elp.apr

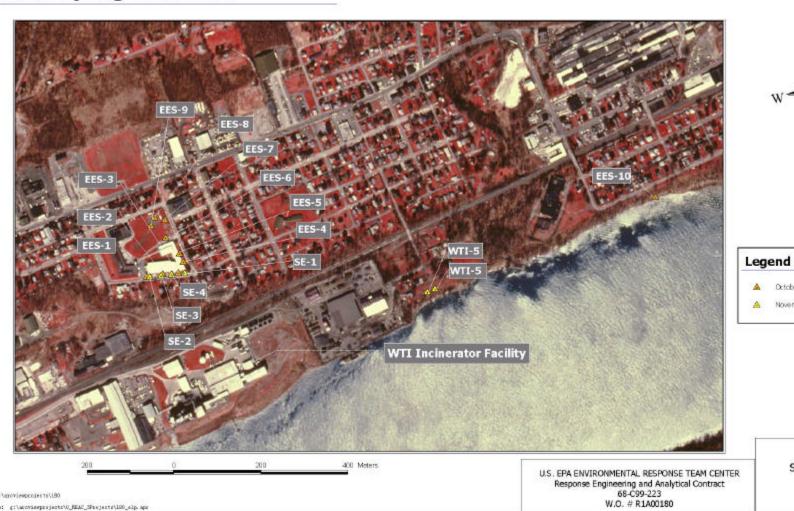
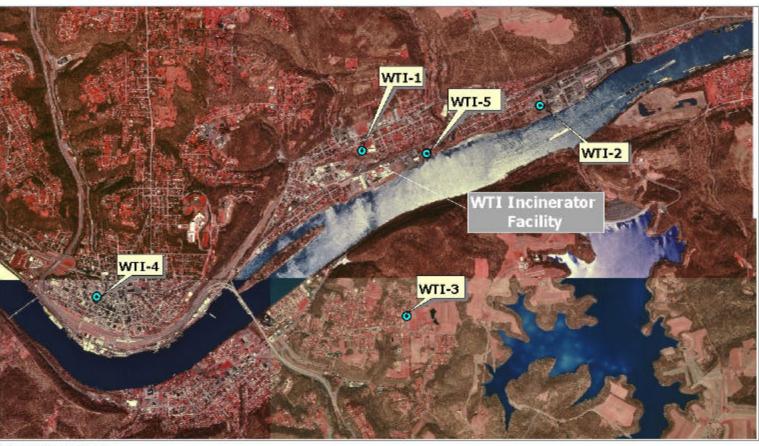



Figure 3 Soil Sampling Locations WTI Incinerator Site East Liverpool, Ohio

△ October 26, 2000 Sample Points A November 15, 2000 Sample Points

Air Sampling Locations

W KE

Map created using USGS digital orthophoto quads, color infra-red imagery highlights vegetation health

> U.S. EPA Environmental Response Team Center Response Englineering and Analytical Contract 69-C99-223 W.O.#R 1A00180

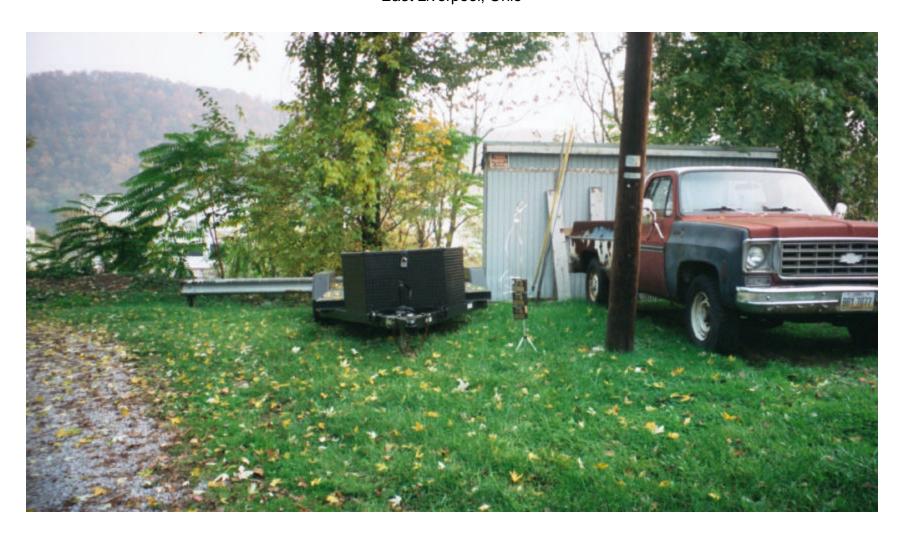
Figure 4
Air Sampling Locations
East Liverpool, Ohio
October / November, 2000

Figure 5
Air Sampling Location EL-001
Sampling Rounds #1 - 2
Elementary School at SW Corner
Etruria Street, East Liverpool, Ohio

Figure 6
Air Sampling Location EL-002
Sampling Rounds #1 - 3
Elementary School at Entrance
Etruria Street, East Liverpool, Ohio

Figure 7
Air Sampling Location EL-003
Sampling Rounds #1 - 3
Back yard of E House on Etruria Street
East Liverpool, Ohio

Figure 8
Air Sampling Location EL-004
Sampling Rounds #1 - 3
Side yard of C House Garage on Etruria Street near garage
East Liverpool, Ohio



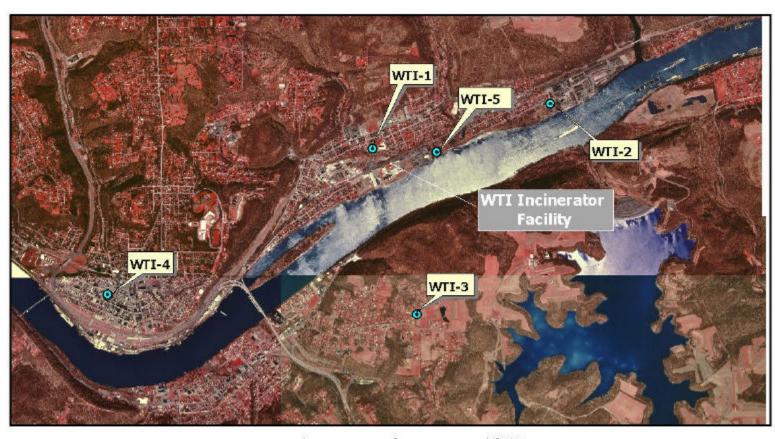

Figure 9
Air Sampling Location EL-005
Sampling Rounds #1 – 3
Elementary School Playground (Snack Shack)
Martin Street Across From Globe Street, East Liverpool, Ohio

Figure 10
Air Sampling Location EL-006
Sampling Rounds #1 - 3
Bank of Ohio River across from 1911 Ohio Avenue
East Liverpool, Ohio

Air Sampling Locations

W E

Map created using USGS digital orthophoto quads, color infra-red imagery highlights vegetation health

> U.S. EPA Environmental Response Team Center Response Engineering and Analytical Contract 69-C99-223 W.O.#R1A00180

Figure 11 Air Sampling Locations East Liverpool, Ohio November, 2000

onia: g:|ancvi.orgeo|acis/alis |agr rule: g:|ancvi.orgeo|acis/alis|

Figure 12
Air Sampling Location EL-001, Sampling Round #3
Air Sampling Location WTI-1, Sampling Rounds #4 and 5
Roof of Administration Building
Etruria Street, East Liverpool, Ohio

Figure 13
Air Sampling Location WTI-2
Sampling Rounds #4 and 5
Water Treatment Plant
East Liverpool, Ohio

Figure 14
Air Sampling Location WTI-3
Sampling Rounds #4 and 5
West Virginia DEP Site
Tyrone Road, Lawrenceville, West Virginia

Figure 15
Air Sampling Location WTI-4
Sampling Rounds #4 and 5
Roof of East Liverpool City Hall
6th Street, East Liverpool, Ohio

Figure 16
Air Sampling Location WTI-5
Sampling Rounds #4 and 5
End of Walter Street (North Bank of Ohio River)
East Liverpool, Ohio

Air Sampling Locations

U.S. EPA ENVIRONMENTAL RESPONSE TEAM CENTER Response Engineering and Analytical Contract 68-C99-223 W.O. # RIACOISO Figure 17
Air Sampling Locations
East Liverpool, Ohio
December 2000

data: g:|ancvi.orgeo|acid/alls .agr rule: g:|ancvi.orgeo|acid/alls .agr rule: g:|ancvi.orgeo|acid/alls.agr

Figure 18
Air Sampling Location WTI-2A
Sampling Round #5
PM10 Location at Water Treatment Plant
East Liverpool, Ohio

Figure 19
Air Sampling Location WTI-6
Sampling Round #5
Port Authority Parking Area (Columbiana County)
Adjacent to WTI Facility, East Liverpool, Ohio

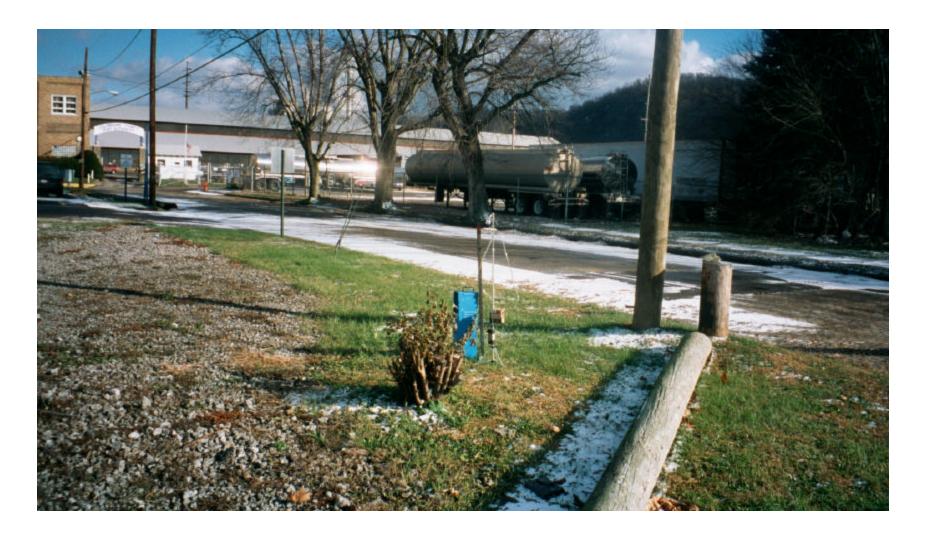


Figure 20
Air Sampling Location WTI-7
Sampling Round #5
West End of Ohio Avenue
North Bank of Ohio River, East Liverpool, Ohio

Figure 21
Air Sampling Location WTI-8
Route 39 At Ohio/Pennsylvania Monument
East Liverpool, Ohio

Figure 22
Air Sampling Location WTI-9
Sampling Round #5
Route 39E at Entrance, Pennsylvania

Figure 23
Air Sampling Location WTI-10
Sampling Round #5
East End of S. H. Bell, Pennsylvania

Figure 24
Air Sampling Location WTI-11
Sampling Round #5
Cause Avenue at East end of S. H. Bell
Midland, Pennsylvania

Soil Sampling Locations

200 B 200 400 Melera

Data: g:\arcylemprojects\i80

apr file: g: \arcvi exprojects\0_R2AC_Projects\180_elp.apr

U.S. EPA ENVIRONMENTAL RESPONSE TEAM CENTER Response Engineering and Analytical Contract 68-099-223 W.O. # R1A00180 Figure 25 Soil Sampling Locations WTI Incinerator Site East Liverpool, Ohio October 2000

Figure 26
Soil Sampling Location EES-1
Sampling Round #1
SW Corner of School
Etruria Street, East Liverpool, Ohio

Figure 27
Soil Sampling Location EES-2
Sampling Round #1
Elementary School Entrance
Etruria Street, East Liverpool, Ohio



Figure 28
Soil Sampling Location EES-3
Sampling Round #1
SE Corner of Elementary School
Etruria Street, East Liverpool, Ohio

Figure 29
Soil Sampling Location EES-4
Sampling Round #1
Elementary School Playground Swing Set
Martin Street, East Liverpool, Ohio

Figure 30
Soil Sampling Location EES-5
Sampling Round #1
Elementary School Playground Ladder
Martin Street, East Liverpool, Ohio

Figure 31
Soil Sampling Location EES-6
Sampling Round #1
Elementary School Bottom of Slide
Martin Street, East Liverpool, Ohio

Figure 32
Soil Sampling Location EES-7
Sampling Round #1
W. Side Snack Shack
Martin Street, East Liverpool, Ohio

Figure 33
Soil Sampling Location EES-8
Sampling Round #1
Home Base - Elementary School Playground
Martin Street, East Liverpool, Ohio

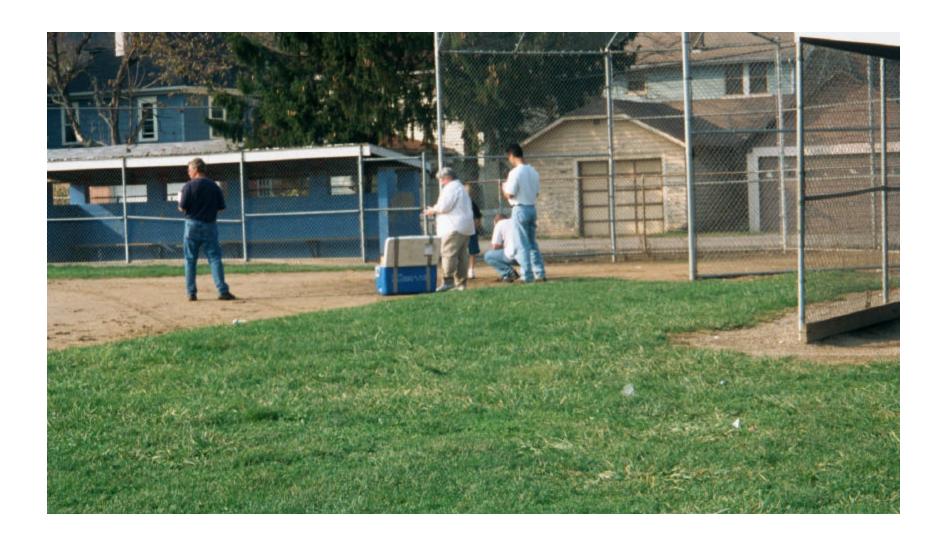


Figure 34
Soil Sampling Location EES-9
Sampling Round #1
Center Field – Elementary School Playground
East Liverpool, Ohio

Figure 35
Soil Sampling Location EES-10
Sampling Round #4
North Bank of Ohio River at Ohio Avenue
East Liverpool, Ohio

Soil Sampling Locations

Map created using USGS digital orthophoto quads, color infra-red imagery highlights vegetation health

> U.S. BPA Environmental Response Team Center Response Engineering and Analytical Contract 69-C99-223 W.O.#R1A00180

Figure 36 Soil Sampling Locations East Liverpool, Ohio November, 2000

data: g:|arcvt.ergco|acto/xi8 .agr rise: g:|arcvt.ergco|acto/x_fam:_neopacto/,erg_cos.agr Figure 37
Soil Sampling Location SE-1
Sampling Round #4
SE Corner of School
Etruria Street, East Liverpool, Ohio

NO PHOTOGRAPH WAS TAKEN FOR THIS LOCATION. SAMPLING WAS DONE VERY CLOSE TO THE LOCATION SHOWN IN FIGURE 26.

Figure 38
Soil Sampling Location SE-2
Sampling Round #4
SW Corner of School
Etruria Street, East Liverpool, Ohio

Figure 39
Soil Sampling Location SE-3
Sampling Round #4
Front of School
Etruria Street, East Liverpool, Ohio

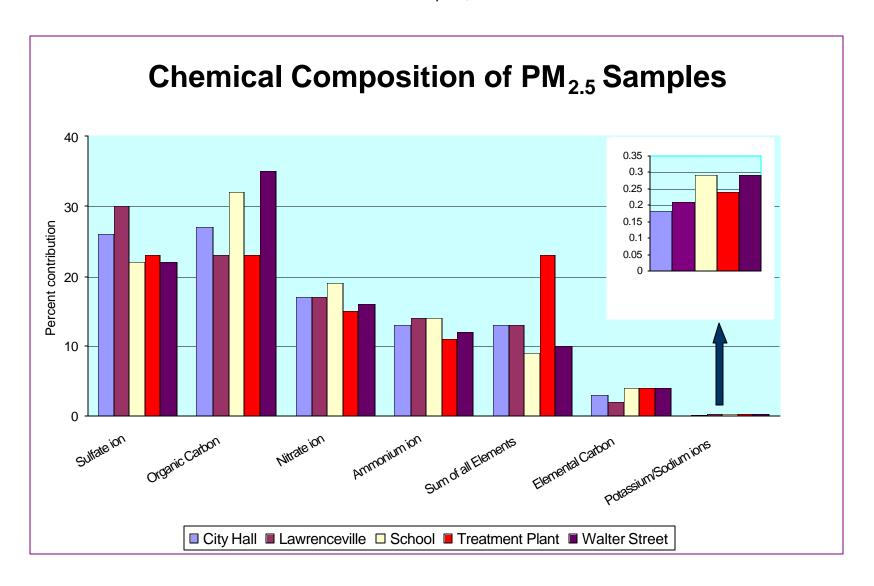
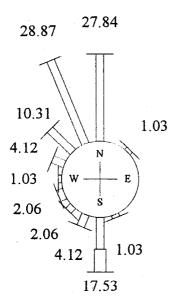
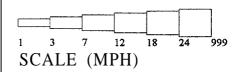
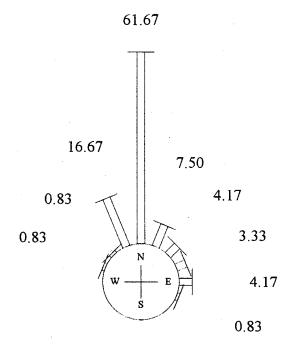

Figure 40
Soil Sampling Location SE-4
Sampling Round #4
School Entrance
Etruria Street, East Liverpool, Ohio

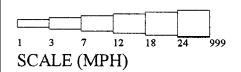
Figure 41
Soil Sampling at Site WTI-5
Sampling Round #4
End of Walter Street
East Liverpool, Ohio




Figure 42 East Liverpool, Ohio

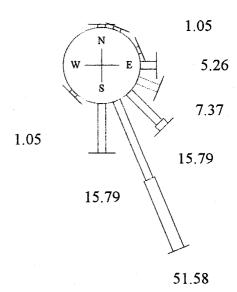
THIS PAGE IS INTENTIONALLY LEFT BLANK

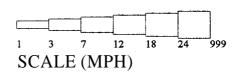

Figure 43
East Liverpool, Ohio
1 November 2000 14:30 - 1 November 2000 22:30
Sampling Location EL-002



V	VIND SPI	EED (MP	PH)PERCI	ENT OCC	CURREN	CE	W	IND SP	EED (MI	PH) PER	CENT OC	CCURRE	NCE
	1-3	3-7	7-12	12-18	18-24	> 24		1-3	3-7	7-12	12-18	18-24	> 24
N	27.84	0.00	0.00	0.00	0.00	0.00	S	10.31	7.22	0.00	0.00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	4.12	0.00	0.00	0.00	0.00	0.00
NE	1.03	0.00	0.00	0.00	0.00	0.00	SW	2.06	0.00	0.00	0.00	0.00	0.00
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	0.00	2.06	0.00	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00	W	1.03	0.00	0.00	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	4.12	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	10.31	0.00	0.00	0.00	0.00	0.00
SSE	1.03	0.00	0.00	0.00	0.00	0.00	NNW	28.87	0.00	0.00	0.00	0.00	0.00

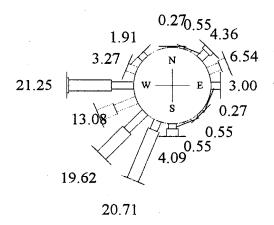
Figure 44
East Liverpool, Ohio
1 November 2000 23:00 - 2 November 2000 7:00
Sampling Location EL-002

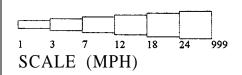




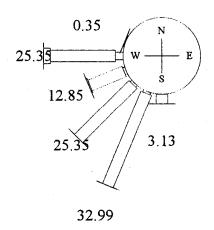
							+							
1	WIND SPE	EED (MP	H) PERCE	ENT OCCI	URRENCE	Ξ		W	VIND SPI	EED (MP	H) PERCE	ENT OCCU	JRRENCI	Ξ
	1-3	3-7	7-12	12-18	18-24	> 24			1-3	3-7	7-12	12-18	18-24	> 24
N	61.67	0.00	0.00	0.00	0.00	0.00		S	0.00	0.00	0.00	0.00	0.00	0.00
NNE	7.50	0.00	0.00	0.00	0.00	0.00		SSW	0.00	0.00	0.00	0.00	0.00	0.00
NE	4.17	0.00	0.00	0.00	0.00	0.00		SW	0.00	0.00	0.00	0.00	0.00	0.00
ENE	3.33	0.00	0.00	0.00	0.00	0.00		WSW	0.00	0.00	0.00	0.00	0.00	0.00
E	4.17	0.00	0.00	0.00	0.00	0.00		W	0.00	0.00	0.00	0.00	0.00	0.00
ESE	0.83	0.00	0.00	0.00	0.00	0.00		WNW	0.83	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00		NW	0.83	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00		NNW	16.67	0.00	0.00	0.00	0.00	0.00

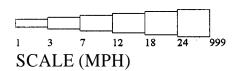
Figure 45
East Liverpool, Ohio
2 November 2000 7:00 - 2 November 2000 15:00
Sampling Location EL-002



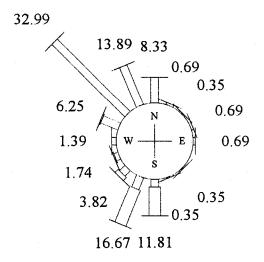


V	VIND SPE	EED (MPI	H) PERCE	ENT OCC	URRENC	E		W	IND SPI	EED (MP	H) PERC	ENT OCC	CURREN	CE
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24
N	1.05	0.00	0.00	0.00	0.00	0.00	ľ	S	15.79	0.00	0.00	0.00	0.00	0.00
NNE	1.05	0.00	0.00	0.00	0.00	0.00		SSW	0.00	0.00	0.00	0.00	0.00	0.00
NE	0.00	0.00	0.00	0.00	0.00	0.00		SW	1.05	0.00	0.00	0.00	0.00	0.00
ENE	1.05	0.00	0.00	0.00	0.00	0.00		WSW	0.00	0.00	0.00	0.00	0.00	0.00
E	5.26	0.00	0.00	0.00	0.00	0.00		W	0.00	0.00	0.00	0.00	0.00	0.00
ESE	7.37	0.00	0.00	0.00	0.00	0.00		WNW	0.00	0.00	0.00	0.00	0.00	0.00
SE	13.68	2.11	0.00	0.00	0.00	0.00		NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	27.37	24.21	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.00


Figure 46
East Liverpool, Ohio
13 November 2000 7:00 - 14 November 2000 15:00
Sampling Location WTI-1

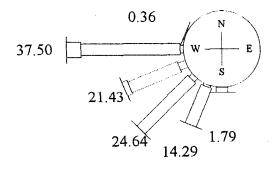


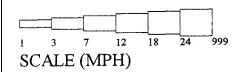
W	VI-ND SI	PEED (M	PH) PER	CENT O	CCURRE	NCE	W	IND SP	EED (MI	PH) PER	CENT O	CCURRE	NCE
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>24
N	0.27	0.00	0.00	0.00	0.00	0.00	S	1.63	2.45	0.00	0.00	0.00	0.00
NNE	0.55	0.00	0.00	0.00	0.00	0.00	SSW	3.27	17.44	0.00	0.00	0.00	0.00
NE	3.00	1.36	0.00	0.00	0.00	0.00	SW	8.17	11.44	0.00	0.00	0.00	0.00
ENE	4.09	2.45	0.00	0.00	0.00	0.00	WSW	7.36	5.72	0.00	0.00	0.00	0.00
E	3.00	0.00	0.00	0.00	0.00	0.00	W	7.08	13.62	0.55	0.00	0.00	0.00
ESE	0.27	0.00	0.00	0.00	0.00	0.00	WNW	3.27	0.00	0.00	0.00	0.00	0.00
SE	0.55	0.00	0.00	0.00	0.00	0.00	NW	1.91	0.00	0.00	0.00	0.00	0.00
SSE	0.55	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.00


Figure 47
East Liverpool, Ohio
14 November 2000 14:00 - 15 November 2000 14:00
Sampling Location WTI-1



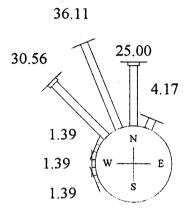
V	VIND SPI	EED (MPI	H) PERCE	ENT OCC	URRENC	Е	W	VIND SP	EED (MP	H) PERC	ENT OCC	CURREN	CE
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>24
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	3.13	0.00	0.00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	0.69	32.29	0.00	0.00	0.00	0.00
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	0.69	24.65	0.00	0.00	0.00	0.00
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	0.69	11.81	0.35	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00	W	2.43	20.83	2.08	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	0.00	0.35	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.00

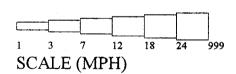

Figure 48
East Liverpool, Ohio
15 November 2000 14:00 - 16 November 2000 14:00
Sampling Location WTI-1



W	VIND SP	EED (MF	PH)PERCI	ENT OCC	CURREN	CE	W	IND SP	EED (MI	PH) PER	CENT O	CCURRE	NCI
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>2
N	8.33	0.00	0.00	0.00	0.00	0.00	S	2.43	9.38	0.00	0.00	0.00	0.0
NNE	0.69	0.00	0.00	0.00	0.00	0.00	SSW	4.17	12.50	0.00	0.00	0.00	0.0
NE	0.35	0.00	0.00	0.00	0.00	0.00	SW	2.43	1.39	0.00	0.00	0.00	0.0
ENE	0.69	0.00	0.00	0.00	0.00	0.00	WSW	1.39	0.35	0.00	0.00	0.00	0.0
E	0.69	0.00	0.00	0.00	0.00	0.00	W	1.39	0.00	0.00	0.00	0.00	0.0
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	5.90	0.35	0.00	0.00	0.00	0.0
SE	0.35	0.00	0.00	0.00	0.00	0.00	NW	32.99	0.00	0.00	0.00	0.00	0.0
SSE	0.35	0.00	0.00	0.00	0.00	0.00	NNW	13.89	0.00	0.00	0.00	0.00	0.0

Figure 49
East Liverpool, Ohio
16 November 2000 14:00 - 17 November 2000 14:00
Sampling Location WTI-1

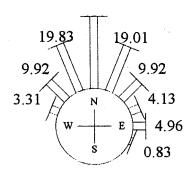


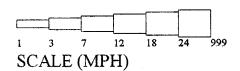


V	VIND SPI	EED (MP	H) PERCE	ENT OCC	URRENCI	Ξ	W	'IND SPI	EED (MPI	H) PERCE	ENT OCCU	JRRENCI	Ξ
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>2
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	1.79	0.00	0.00	0.00	0.
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	0.71	13.57	0.00	0.00	0.00	0.0
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	1.43	23.21	0.00	0.00	0.00	0.
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	2.50	17.14	1.79	0.00	0.00	0.
E	0.00	0.00	0.00	0.00	0.00	0.00	W	1.07	31.79	4.64	0.00	0.00	0.0
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	0.00	0.36	0.00	0.00	0.00	0.0
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	0.
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.

109

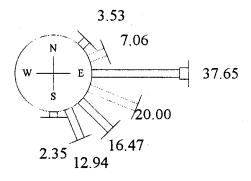
Figure 50
East Liverpool, Ohio
1 November 2000 14:30 - 1 November 2000 22:30
Sampling Location WTI-2

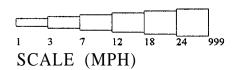




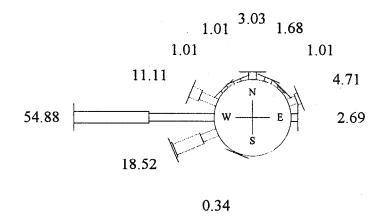
V	VIND SPI	EED (MP	H) PERCE	ENT OCCI	URRENCE	3	W	IND SPI	EED (MPI	H) PERCE	ENT OCCU	JRRENCE	3
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>
N	23.61	1.39	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	0
NNE	4.17	0.00	0.00	0.00	0.00	0.00	SSW	0.00	0.00	0.00	0.00	0.00	0.
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	0.00	0.00	0.00	0.00	0.00	0
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	1.39	0.00	0.00	0.00	0.00	0.
Е	0.00	0.00	0.00	0.00	0.00	0.00	W	1.39	0.00	0.00	0.00	0.00	0.
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	1.39	0.00	0.00	0.00	0.00	0.
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	29.17	1.39	0.00	0.00	0.00	0
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	36.11	0.00	0.00	0.00	0.00	0

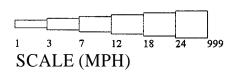
Figure 51
East Liverpool, Ohio
1 November 2000 23:00 - 15 November 2000 7:00
Sampling Location WTI-2


28.10



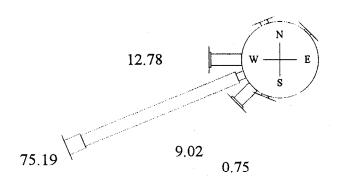
V	WIND SPE	EED (MPI	H) PERCE	ENT OCCU	URRENCE	Ξ	W	/IND SPI	EED (MP	H) PERCE	ENT OCCU	JRRENCI	Е
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>24
N	28.10	0.00	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	0.00
NNE	19.01	0.00	0.00	0.00	0.00	0.00	SSW	0.00	0.00	0.00	0.00	0.00	0.00
NE	9.92	0.00	0.00	0.00	0.00	0.00	SW	0.00	0.00	0.00	0.00	0.00	0.00
ENE	4.13	0.00	0.00	0.00	0.00	0.00	WSW	0.00	0.00	0.00	0.00	0.00	0.00
E	4.96	0.00	0.00	0.00	0.00	0.00	W	0.00	0.00	0.00	0.00	0.00	0.00
ESE	0.83	0.00	0.00	0.00	0.00	0.00	WNW	3.31	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	9.92	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	19.83	0.00	0.00	0.00	0.00	0.00


Figure 52
East Liverpool, Ohio
2 November 2000 7:00 - 2 November 2000 15:00
Sampling Location WTI-2



V	VIND SP	EED (M	PH) PER	CENT O	CCURRE	NCE		W	IND SP	EED (M	PH) PER	CENT O	CCURRE	NCE
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24
N	0.00	0.00	0.00	0.00	0.00	0.00		S	2.35	0.00	0.00	0.00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00		ssw	0.00	0.00	0.00	0.00	0.00	0.00
NE	3.53	0.00	0.00	0.00	0.00	0.00		sw	0.00	0.00	0.00	0.00	0.00	0.00
ENE	7.06	0.00	0.00	0.00	0.00	0.00		WSW	0.00	0.00	0.00	0.00	0.00	0.00
E	34.12	3.53	0.00	0.00	0.00	0.00		W	0.00	0.00	0.00	0.00	0.00	0.00
ESE	20.00	0.00	0.00	0.00	0.00	0.00		WNW	0.00	0.00	0.00	0.00	0.00	0.00
SE	16.47	0.00	0.00	0.00	0.00	0.00		NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	12.94	0.00	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.00
							Ц							

Figure 53
East Liverpool, Ohio
13 November 2000 14:00 - 14 November 2000 14:00
Sampling Location WTI-2



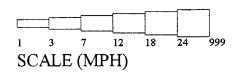
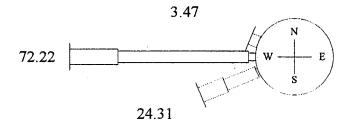

W	VIND SP	EED (MP	PH) PERC	ENT OC	CURREN	CE
	1-3	3-7	7-12	12-18	18-24	>24
N	3.03	0.00	0.00	0.00	0.00	0.00
NNE	1.68	0.00	0.00	0.00	0.00	0.00
1E	0.67	0.34	0.00	0.00	0.00	0.00
ENE	3.37	1.35	0.00	0.00	0.00	0.00
3	2.69	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00
Е	0.00	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00

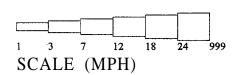
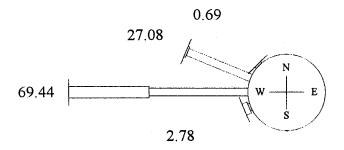
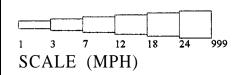
Figure 54
East Liverpool, Ohio
4 December 2000 20:00 - 5 December 2000 9:00
Sampling Location WTI-2

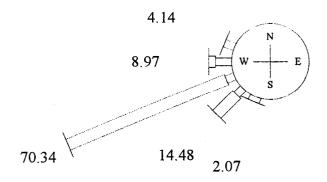
1.50

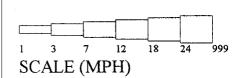

0.75

V	VIND SPE	ED (MPH) PERCI	ENT OCC	JRRENCE	č	V	VIND SPE	EED (MPH) PERCI	ENT OCCU	JRRENCI	3
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	•
NNE	0.00	0.00	0.00	0.00	0.00	0.00	ssw	0.75	0.00	0.00	0.00	0.00	(
NE	0.75	0.00	0.00	0.00	0.00	0.00	sw	0.00	8.27	0.75	0.00	0.00	(
ENE	0.00	0.00	0.00	0.00	0.00	0.00	wsw	3.01	65.41	6.77	0.00	0.00	(
E	0.00	0.00	0.00	0.00	0.00	0.00	W	0.00	12.03	0.75	0.00	0.00	. (
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	0.00	0.00	0.00	0.00	0.00	(
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	(
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	1.50	0.00	0.00	0.00	0.00	(

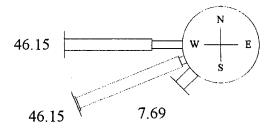
Figure 55 East Liverpool, Ohio 5 December 2000 9:00 - 5 December 2000 20:00 Sampling Location WTI-2

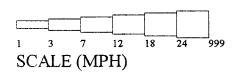





Figure 56
East Liverpool, Ohio
5 December 2000 20:00 - 6 December 2000 8:00
Sampling Location WTI-2

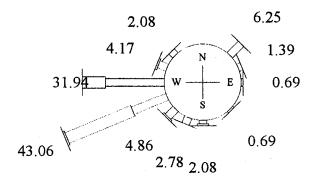


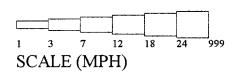
W	VIND SP	EED (MF	PH)PERCI	ENT OCC	CURREN	CE	W	IND SP	EED (MI	PH) PER	CENT O	CCURRE	NC
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>2
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	0.
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	0.00	0.00	0.00	0.00	0.00	0.0
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	0.00	0.00	0.00	0.00	0.00	0.0
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	0.69	2.08	0.00	0.00	0.00	0.0
E	0.00	0.00	0.00	0.00	0.00	0.00	W	38.19	31.25	0.00	0.00	0.00	0.0
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	26.39	0.69	0.00	0.00	0.00	0.0
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.69	0.00	0.00	0.00	0.00	0.0
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.


Figure 57
East Liverpool, Ohio
6 December 2000 8:00 - 6 December 2000 20:00
Sampling Location, WTI-2

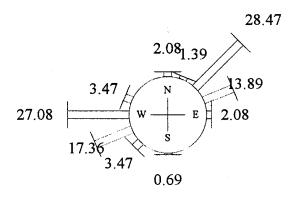


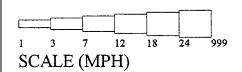
V	VIND SPE	EED (MPI	H) PERCI	ENT OCC	URRENC	Е	W	INK) SP	EED (MPH)	PERCI	ENT OCCU	JRRENCE	3
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	(
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	0.00	2.07	0.00	0.00	0.00	(
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	3.45	11.03	0.00	0.00	0.00	(
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	3.45	66.90	0.00	0.00	0.00	(
E	0.00	0.00	0.00	0.00	0.00	0.00	W	6.21	2.76	0.00	0.00	0.00	(
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	4.14	0.00	0.00	0.00	0.00	(
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	(
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	


Figure 58
East Liverpool, Ohio
6 December 2000 20:00 - 7 December 2000 8:00
Sampling Location WTI-2



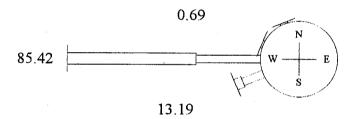
W	WIND SPEED (MPH) PERCENT OCCURRENCE							
	1-3	3-7	7-12	12-18	18-24	>24		
N	0.00	0.00	0.00	0.00	0.00	0.00		
NNE	0.00	0.00	0.00	0.00	0.00	0.00		
NE	0.00	0.00	0.00	0.00	0.00	0.00		
ENE	0.00	0.00	0.00	0.00	0.00	0.00		
E	0.00	0.00	0.00	0.00	0.00	0.00		
ESE	0.00	0.00	0.00	0.00	0.00	0.00		
SE	0.00	0.00	0.00	0.00	0.00	0.00		
SSE	0.00	0.00	0.00	0.00	0.00	0.00		

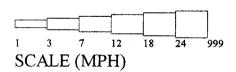

Figure 59
East Liverpool, Ohio
7 December 2000 8:00 - 7 December 2000 20:00
Sampling Location WTI-2



,	WIND SPEED (MPH)PERCENT OCCURRENCE								WIND SPEED (MPH) PERCENT OCCURRENCE						
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24	
N	0.00	0.00	0.00	0.00	0.00	0.00		S	1.39	0.69	0.00	0.00	0.00	0.00	
NNE	0.00	0.00	0.00	0.00	0.00	0.00		SSW	2.78	0.00	0.00	0.00	0.00	0.00	
NE	6.25	0.00	0.00	0.00	0.00	0.00		SW	4.17	0.69	0.00	0.00	0.00	0.00	
ENE	1.39	0.00	0.00	0.00	0.00	0.00		WSW	14.58	27.78	0.69	0.00	0.00	0.00	
E	0.69	0.00	0.00	0.00	0.00	0.00		W	22.92	9.03	0.00	0.00	0.00	0.00	
ESE	0.00	0.00	0.00	0.00	0.00	0.00		WNW	3.47	0.69	0.00	0.00	0.00	0.00	
SE	0.69	0.00	0.00	0.00	0.00	0.00		NW	2.08	0.00	0.00	0.00	0.00	0.00	
SSE	0.00	0.00	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.00	

Figure 60
East Liverpool, Ohio
7 December 2000 20:00 - 8 December 2000 8:00
Sampling Location WTI-2

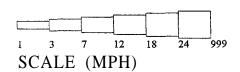




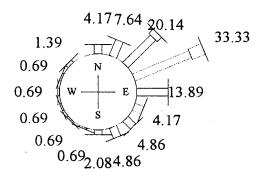
V	WIND SPEED (MPH) PERCENT OCCURRENCE							WIND SPEED (MPH) PERCENT OCCURRENCE						
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24
N	2.08	0.00	0.00	0.00	0.00	0.00		S	0.69	0.00	0.00	0.00	0.00	0.00
NNE	1.39	0.00	0.00	0.00	0.00	0.00		SSW	0.00	0.00	0.00	0.00	0.00	0.00
NE	28.47	0.00	0.00	0.00	0.00	0.00		SW	3.47	0.00	0.00	0.00	0.00	0.00
ENE	13.89	0.00	0.00	0.00	0.00	0.00		WSW	17.36	0.00	0.00	0.00	0.00	0.00
E	2.08	0.00	0.00	0.00	0.00	0.00		W	27.08	0.00	0.00	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00		WNW	3.47	0.00	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00		NW	0.00	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.00
							11							

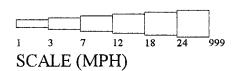
Figure 61
East Liverpool, Ohio
8 December 2000 8:00 - 8 December 2000 20:00
Sampling Location WTI-2

0.69

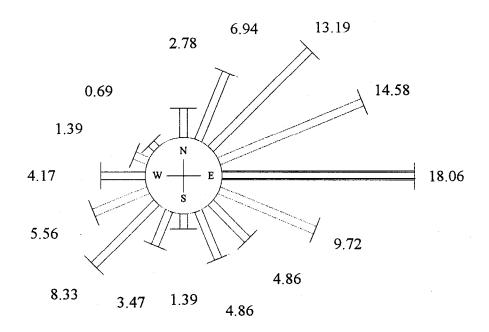


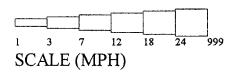
V	VIND SPI	EED (MPI	H) PERCI	ENT OCC	URRENCI	Ξ	V	VIND SPE	EED (MPI	H) PERCE	ENT OCCU	URRENCI	3
	1-3	3-7	7-12	12-18	18-24	-24		1-3	3-7	7-12	12-18	18-24	;
N	0.00	0.00	0.00	0.00	0.00	0.00	S	0.00	0.00	0.00	0.00	0.00	(
NNE	0.00	0.00	0.00	0.00	0.00	0.00	SSW	0.00	0.00	0.00	0.00	0.00	0
NE	0.00	0.00	0.00	0.00	0.00	0.00	SW	0.00	0.00	0.00	0.00	0.00	0
ENE	0.00	0.00	0.00	0.00	0.00	0.00	WSW	9.72	3.47	0.00	0.00	0.00	0
E	0.00	0.00	0.00	0.00	0.00	0.00	W	28.47	56.94	0.00	0.00	0.00	0
ESE	0.00	0.00	0.00	0.00	0.00	0.00	WNW	0.69	0.00	0.00	0.00	0.00	0
SE	0.00	0.00	0.00	0.00	0.00	0.00	NW	0.00	0.00	0.00	0.00	0.00	0
SSE	0.00	0.00	0.00	0.00	0.00	0.00	NNW	0.69	0.00	0.00	0.00	0.00	0


Figure 62
East Liverpool, Ohio
8 December 2000 20:00 - 9 December 2000 8:00
Sampling Location WTI-2


0.69 0.69 12.50 73.61 W E

V	WIND SPEED (MPH) PERCENT OCCURRENCE							WIND SPEED (MPH) PERCENT OCCURRENCE						
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24
N	0.69	0.00	0.00	0.00	0.00	0.00		S	0.00	0.00	0.00	0.00	0.00	0.00
NNE	0.00	0.00	0.00	0.00	0.00	0.00		SSW	0.00	0.00	0.00	0.00	0.00	0.00
NE	0.00	0.00	0.00	0.00	0.00	0.00		SW	0.00	0.00	0.00	0.00	0.00	0.00
ENE	0.00	0.00	0.00	0.00	0.00	0.00		WSW	12.50	0.00	0.00	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00		W	55.56	18.06	0.00	0.00	0.00	0.00
ESE	0.00	0.00	0.00	0.00	0.00	0.00		WNW	11.81	0.69	0.00	0.00	0.00	0.00
SE	0.00	0.00	0.00	0.00	0.00	0.00		NW	0.69	0.00	0.00	0.00	0.00	0.00
SSE	0.00	0.00	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.00
							H							


Figure 63
East Liverpool, Ohio
9 December 2000 8:00 - 9 December 2000 20:00
Sampling Location WTI-2



							_							
V	WIND SPEED (MPH) PERCENT OCCURRENCE							WIND SPEED (MPH) PERCENT OCCURRENCE						
	1-3	3-7	7-12	12-18	18-24	>24			1-3	3-7	7-12	12-18	18-24	>24
N	4.17	0.00	0.00	0.00	0.00	0.00		S	2.08	0.00	0.00	0.00	0.00	0.0
NNE	7.64	0.00	0.00	0.00	0.00	0.00		SSW	0.69	0.00	0.00	0.00	0.00	0.0
NE	17.36	2.78	0.00	0.00	0.00	0.00		SW	0.69	0.00	0.00	0.00	0.00	0.0
ENE	27.08	6.25	0.00	0.00	0.00	0.00		WSW	0.69	0.00	0.00	0.00	0.00	0.0
E	13.89	0.00	0.00	0.00	0.00	0.00		W	0.69	0.00	0.00	0.00	0.00	0.0
ESE	4.17	0.00	0.00	0.00	0.00	0.00		WNW	0.69	0.00	0.00	0.00	0.00	0.0
SE	4.86	0.00	0.00	0.00	0.00	0.00		NW	1.39	0.00	0.00	0.00	0.00	0.0
SSE	4.86	0.00	0.00	0.00	0.00	0.00		NNW	0.00	0.00	0.00	0.00	0.00	0.0

Figure 64
East Liverpool, Ohio
9 December 2000 20:00 - 10 December 2000 8:00
Sampling Location WTI-2

V	VIND SPE	ED (MPH) PERC	ENT OCCI	JRRENCI	3	v	VIND SPE	EED (MPH	I) PERCI	ENT OCCU	JRRENCI	3
	1-3	3-7	7-12	12-18	18-24	>24		1-3	3-7	7-12	12-18	18-24	>
N	2.78	0.00	0.00	0.00	0.00	0.00	S	1.39	0.00	0.00	0.00	0.00	0.
NNE	6.94	0.00	0.00	0.00	0.00	0.00	SSW	3.47	0.00	0.00	0.00	0.00	0.
NE	13.19	0.00	0.00	0.00	0.00	0.00	.sw	8.33	0.00	0.00	0.00	0.00	0.
ENE	14.58	0.00	0.00	0.00	0.00	0.00	wsw	5.56	0.00	0.00	0.00	0.00	0.
E	18.06	0.00	0.00	0.00	0.00	0.00	W	4.17	0.00	0.00	0.00	0.00	0.
ESE	9.72	0.00	0.00	0.00	0.00	0.00	WNW	1.39	0.00	0.00	0.00	0.00	0.
SE	4.86	0.00	0.00	0.00	0.00	0.00	NW	0.69	0.00	0.00	0.00	0.00	0.
SSE	4.86	0.00	0.00	0.00	0.00	0.00	NNW	0.00	0.00	0.00	0.00	0.00	0.

Appendix A

ATSDR Correspondence 1 November, 2000 through 22 March, 2001

Healthy People in a Healthy Environment

Joseph Latornara
Addressee Telephone Number:
732 321 6740
Facsimile Telephone Number:
732 301 6724
201 0101
Sender:
Theresa McDormant
Sender Telephone Number:
<u>404 639 4143</u>
. 1
Number of Pages:
(including this page)
Date: 10 11/1/2000
Subject/Comments:
AROA of Strike team
Comments and recommendations
MI WATER POT TOTALISING

ATSDR Facsimile Numbers:

Office of the Assistant Administrator Executive Park, Building 37, Room 3726 639-0700; Fax # 639-0744

Office of the Associate Administrator for Science Executive Park, Building 37, Room 3720 639-0708; Fax # 639-0586

ATSDR Washington Office Hubert H. Humphery Building, Washington, DC (202) 690-7536; Fax # (202) 690-6985

Office of Federal Programs Executive Park, Building 37, Room 3756 639-0730; Fax # 639-0759

Office of Policy and External Affairs Executive Park, Building 35, Room 3552 639-0500; Fax # 639-0522

Office of Program Operations & Management Executive Park, Building 35, Room 3526 639-0550; Fax # 639-0560

Office of Regional Operations Executive Park, Building 37, Room 3701 639-6090, Fax # 639-0740

Regional Fax Numbers

Region 1:(617) 918-1494 Region 6: (214) 665-2237 Region 2: (212) 637-3253 Region 7: (913) 551-7061 Region 3: (215) 814-3003 Region 8: (303) 312-7018 Region 4: (404) 562-1790 Region 9: (415) 744-1797 Region 5: (312) 886-6066 Region 10: (206) 553-2142

ATSDR/EPA Liaison Office Crystal Gateway: (703) 603-9100 Waterside Mall: (202) 260-6606

Division of Health Assessment & Consultation Executive Park, Building 31, Room 3134 639-0610, Fax # 639-0654

Division of Health Education and Promotion Executive Park, Building 4, Room 1104 639-6204, Fax # 639-6207/6208

Division of Health Studies

ATSDR RECORD OF ACTIVITY

Site Name: WTI Waste Technologies Industries CERCLIS#: CRS#

Site Name:WTI Waste Technologies Industries

CERCLIS#:

CRS#

ROUTING: M. West, FILE -AUTHOR INFORMATION-User ID: Tak9 Date: November 1, 2000 Name: Theresa McDarmont Time: AM____PM__1:46pm__ **Preparer: DHAC** -SITE/EVENT INFORMATION-**Site Name:** Waste Technologies Industries (WTI) **CERCLIS #: Cost Recovery #:** Address: City: East Liverpool State: OH **County: Zip Code: Congressional District:** Region:01 -SITE STATUS-__ Non-Site specific X_Non-NFL __RCRA __ NPL Federal (1) __ Emergency Response __Remedial Removal X Other: (2) -ACTIVITIES-__ Site Visit __ Outgoing Call __ Public Meeting __ Health Consult __ Incoming Call __ Info Provided __ Health Referral __ Conference Call __ Data Review __ Other Meeting __ Incoming Mail __ Written Response Worker Health 01 Tech Assist __ Training __ Non T-Critical Removal Emerg Response T-Crit Removal Other Text: Consult Category: -REQUESTOR AFFILIATION-Requestor: Joseph Lafornara **Affiliation:**US EPA/ERT Fax: (732) - 721-6724 **Phone #1:**(732) 321-6740 Address: Lockheed Martin Technology Services Group Environmental Services REAC 2890 Woodbridge Avenue, Building 209 Annex **Zip Code:**08837-3679 City: Edison State: NJ **County: Congressional District:**

Site Name: WTI Waste Technologies Industries CERCLIS#: CRS#

		-CONTACTS A	ND AFFILIA	TION-	
(1) Raj Singhv	⁄i		(31) Sharon W	ilbur	
(31) Hana Po	ohl		()		
1-EPA 7-CITY HLTH 13-OTHER 20-OTHR CITY 26-ARMY	2-USCG 8-HOSPITAL 14-UNKNOWN 21-INTL 27-NAVY	3-OTHER FED 9-LAW ENFORE 15-DOD16-DOE 22-CITZ GROUP 28-AIR FORCE	4-STATE ENV 10-FIRE DEPT 17-NOAA 23-ELECT.OFF 29-DEF LOG AG		6-COUNTY HLT 12-PRIV CITZ 19-OTHR CNTY 25-NEWS MEDIA 31-ATSDR
		-PROGRA	AM AREAS-		
Health Asso	essment	Health Studies	Tox Info-pr	ofile	Worker Health
Petition As	sessment	Health Survellnc	Tox Info-N	onprofile	Admin
Emergency	Response	Disease Registry	Subst-Spec	•	Other (Tech Assist)
Health Con	sultation	Exposure Registry	Health Educ	cation	

NARRATIVE SUMMARY:

USEPA Emergency Response Team provided ATSDR data on ambient air samples collected for volatile organic compounds, metals, and inorganic acids. These samples were taken by EPA on October 26, 2000 in response to public health concern of emissions coming from a hazardous waste incinerator located in East Liverpool, Ohio. Air samples were taken on the roof of the nearby (1000 feet) East Liverpool Elementary school, school play ground, and three other locations near school and upwind locations away from Waste Technologies Industries (WTI). EPA requested that ATSDR review the data and provide conclusions/recommendations on public health implications. EPA asked for specific recommendations regarding levels of Benzene.

<u>ACTION REQUIRED/RECOMMENDATIONS/INFO PROVI</u>DED:

Benzene

ATSDR found that the levels of benzene (1.2 - 2.1 (ppb)) in the air samples provided were below the health based screening value of 4.0 ppb. The air samples were comparable to levels found in urban air. Therefore, the benzene levels in the air samples reviewed would not be considered of public health concern.

Lead

Levels of lead in air at the sampling concentrations $(0.10 - 0.30 \text{ ug/m}^3))$ would add less than one microgram/deciliter to blood lead levels. With national blood background levels of approximately 3 mg/dl, the addition of less than 1 mg/dl would result in a value much less than the public health concern level set by CDC of 10 ug/dl.

Chromium

Levels of chromium ranged from 0.26 to 1.3 (ug/m³) were significantly above ATSDRs health based screening values when evaluated for cancer effects from hexavalent chromium (CREG = 0.00008).

ATSDR has an EMEG of 0.5 ug/m³ for intermediate exposures to hexavalent chromium. Several values exceeded this level.

Recommendations

ATSDR recommends immediate additional air sampling of Chromium. Sampling should include speciation between Chromium VI and Chromium III and use of a lower detection level of 8 nanograms/cubic meter.

Signature: Date: // -/ - 00

Concurrence: Date:

References

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

Strike AROAWTI.wpd

Agency for Toxic Substances and Disease Registry Facsimile Transmission

EXPOSURE INVESTIGATIONS AND CONSULTATION BRANCH

TO: Zaja Singhvi	FROM: 404 639. 4143 herese Me Dormant
	Strike team leader
FAX NO. (152) 321 - 6724	Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation
PHONE NO. (122) 321 6740	Mail Stop E32 1600 Clifton Road Atlanta, Ga. 30333
DATE: November 8, 2000	FAX NO. (404) 639-0655
NUMBER OF PAGES: 3 (Not including this page)	TEL NO. (404) 639-0616
COMMENTS	
It HOO LOVE and	From the ATSIR Strike From Justians, please give me a dall threa
Please Distribule to your f	To IKS at EPA as appropriate.

CERCLIS#:

CRS#A-180

Site Name: WTI Waste Technologies Industries

ROUTING: M. West, FILE -AUTHOR INFORMATION-User ID: Tak9 **Date:** November 6, 2000 Name: Theresa McDarmont Time: AM___PM_5:00pm__ **Preparer:** DHAC -SITE/EVENT INFORMATION-**Site Name:** Waste Technologies Industries (WTI) **CERCLIS#:** Cost Recovery #: A- 180 **Address: City: East Liverpool County:** State: OH Zip Code: **Congressional District:** Region: 01 -SITE STATUS-__ Non-Site specific __ NPL X_Non-NPL __RCRA Federal (1) __ Emergency Response Remedial __ Removal X Other: (2) -ACTIVITIES-__ Site Visit __ Public Meeting X Health Consult __ Outgoing Call __ Incoming Call __ Info Provided __ Confer-once Call __ Data Review __ Other Meeting __ Health Referral __ Training. __ Incoming Mail __ Written Response __ Worker Health 01 Tech Assist __ Non T-Critical Removal __ Emerg Response __ T-Crit Removal Other Text: Consult Category: -REQUESTOR AFFILIATION-**Requestor:** Raja Singhvi **Affiliation:** US EPA/ERT **Phone #l:** (732) 321-6740 **Fax:** (732) - 721-6724 Address: Lockheed Martin Technology Services Group Environmental Services REAC 2890 Woodbridge Avenue, Building 209 Annex City: Edison State: NJ **Zip Code:** 08837-3679 **County: Congressional District:**

Site Name: WTI Waste Technologies Industries CERCLIS#: CRS#A-180

-CONTACTS AND AFFILIATION-

 (1) Raj Singhvi (31) John Wheeler (1) Peter Grevatt 			(31) Frank Schnell(1) Caroline Previ		
1-EPA 7-CITY HLTH 13-OTHER 20-OTHR CITY 26-ARMY	2-USCG 8-HOSPITAL 14-UNKNOWN 21-INTL 27-NAVY	3-OTHER FED 9-LAW ENFORE 15-DOD16-DOE 22-CITZ GROUP 28-AIR FORCE	4-STATE ENV 10-FIRE DEPT 17-NOAA 23-ELECT: OFF 29-DEF LOG AG		6-COUNTY HLT 12-PRIV CITZ 19-OTHR CNTY 25-NEWS MEDIA 31-ATSDR
		-PROGRA	M AREAS-		
Health Assessment					Worker Health
Petition Assessment Emergency Response					Admin Other (Tech Assist)
X Health Consultation		Exposure Registry	Health Education		,

NARRATIVE SUMMARY:

USEPA Emergency Response Team provided ATSDR data on ambient air samples collected for metals. These samples were taken by EPA November 1st and 2nd, 2000, in response to the public health concern of emissions coming from a hazardous waste incinerator located in East Liverpool, Ohio. Air samples were taken on the roof of the nearby (1000 feet) East Liverpool Elementary school, school play ground, and three other locations near the school and upwind locations away from Waste Technologies Industries (WTI). EPA requested that ATSDR review the data and provide conclusions/recommendations on public health implications. EPA asked for specific recommendations regarding levels of manganese.

ACTION REQUIRED/RECOMMENDATIONS/INFO PROVIDED:

During the November 1st- 2nd sampling event a total of 17 air samples were taken and analyzed for metals (NIOSH Method 7300). Data for 5 metals, calcium, iron, lead, manganese and zinc were provided to ATSDR for this review. Levels of manganese near the WTI Incinerator ranged from 0.37 - 2.4 (ug/m³) with an average level of 1.0 (ug/m³). Three samples were taken upwind at a location 1.5 miles from WTI to serve as the background, these samples ranged from 0.41 - 7.3 (ug/m³). All of the background values and most of the levels near WTI were above ATSDRs EMEG, of 0.4 ug/m³ for intermediate exposures to manganese. Based on occupational studies, levels of manganese of 140 (ug/m³) (LOAEL) may cause mild neurological effects.

Recommendations

It is unclear why background levels of manganese were relatively higher than site levels. This is particularly true for the one sample showing 7.3 ug/m³. Because detected levels of manganese were above ATSDR health based. screening values, futher characterization is needed to address public health implications. ATSDR recommends immediate additional air sampling of manganese.

Site Name: WTI Waste Technologies Industries

CERCLIS#:

CRS#A-180

Signature:

Date:

11-8-2000

Concurrence:

Date: 11-8-2000

References

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

Strike AROA WTIMn.wpd

Agency for Toxic Substances and Disease Registry Facsimile Transmission

EXPOSURE INVESTIGATIONS AND CONSULTATION BRANCH

TO: Roj Singhvi	FROM Theresa McDarmont
FAX NO. 832 321-6724	Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation
PHONE NO. ()	Mail Stop E32 1600 Clifton Road Atlanta, Ga. 30333
DATE: 11-22-00	FAX NO. (404) 639-0655
NUMBER OF PAGES:	TEL NO. (404) 639-0616
Strike tean response ARDA +	o recent air sampling event.
	Thresa

Site Name: WTI Waste Technologies Industries

CERCLIS#:

CRS#A-180

ROUTING: M. West, FILE			
User ID: Tak9	-AUTHOR INFO		ovember 21, 200O
Name: Theresa McDarmont Preparer: DHAC		Time:	AMPM_3:00pm
Site Name: Waste Technolog CERCLIS #: Address:	\mathbf{C}	FORMATION- ost Recovery #: A-180 ty: East Liverpool	
County: Region: 01	State: OH	Zip Code: Congressional Distr	rict:
(2) _ Emergency Respon _ Incoming Call _ Pub	rese Remedial -ACTIVI lic Meeting	Non-Site specific Fe Removal X_O TIES- n Consult Site Visit rovided Conference ng Mail Worker H	ther: Outgoing Call ce Call Data Review
Requestor: Raj Singhvi Affiliation: US EPA/ERT Phone #l: (732) 321-6740 Address: 2890 Woodbridge A City: Edison	-REQUESTOR And Fax: (732) - Avenue, Building 18 State: NJ	321-6724	o de: 08837-3679
County:	Congressional Distri	ct:	

Site Name: WTl Waste Technologies Industries CERCLIS#: CRS#A-I80

-CONTACTS AND AFFILIATION-

(1) Raj Singhvi

(31) Robert Williams

(31) John Wheeler

1-EPA 7-CITY HLTH 13-OTHER 20-OTHR CITY 26-ARMY	2-USCG 8-HOSPITAL 14-UNKNOWN 21-INTL 27-NAVY	3-OTHER FED 9-LAW ENFORE 15-DOD16-DOE 22-CITZ GROUP 28-AIR FORCE	4-STATE ENV 10-FIRE DEPT 17-NOAA 23-ELECT.OFF 29-DEF LOG AG	5-STATE HLT 11-POISON CTR 18-OTHR STATE 24-PRIV. CO CCY 30-NRC	6-COUNTY HLT 12-PRIV CITZ 19-OTHR CNTY 25-NEWS MEDIA 31-ATSDR
		-PROGRA	M AREAS-		
Health Ass	essment	Health studies	Tox Info-pr	ofile	Worker Health
Petition As	ssessment	Health Survellnc	Tox Info-N	onproflle	Admin
Emergency	Response	Disease Registry	Subst-Spec	c Research	Other (Tech Assist)
X Health Co	onsultation	Exposure Registry	Health Edu	cation	

NARRATIVE SUMMARY:

USEPA Emergency Response Team provided ATSDR data on ambient air samples collected for metals. These samples were taken by EPA on November 7th, 8th, 11th, 12th, 2000, in response to the public health concern of emissions coming from a hazardous waste incinerator located in East Liverpool, Ohio. Air samples were taken on the roof of the nearby (1000 feet) East Liverpool Elementary school, school play ground, and three other locations near the school and upwind locations away from Waste Technologies Industries (WTI). EPA requested that ATSDR review the data and provide conclusions/recommendations on public health implications.

ACTION REQUIRED/RECOMMENDATIONS/INFO PROVIDED:

During the November 7 - 12 sampling event, a total of 24 air samples were taken and analyzed for metals (NIOSH Method 7300). Data for 13 metals, aluminum, antimony, arsenic barium, calcium chromium, copper, iron, lead, manganese, nickle, selenium, and zinc were provided to ATSDR for this review. None of the levels of the metals sampled were at levels of public health concern. Levels of manganese near the WTI Incinerator ranged from ND - 4.1 (ug/m³). Four samples were taken upwind at a location 1.5 miles from WTI to serve as the background, these samples ranged from 0.012 - 22 (ug/m³), The majority of the background values and most of the levels near WTI were above ATSDRs EMEG, of 0.4 ug/m³ for intermediate exposures to manganese. Based on occupational studies, levels of manganese of 140 ug/m³ (LOAEL) may cause mild neurological effects.

Recommendations

It is unclear why background levels of manganese were relatively higher than site levels. This is particularly true for the one sample showing 22 ug/m³. The results of manganese levels in the previous sampling event on November 1 - 2, were within the range of the current air sampling results. Although

Site Name: WTI Waste Technologies Industries

CERCLIS#:

CRS#A-180

adverse health effects from the current levels are not expected, increased levels could raise health concerns; therefore, periodic monitoring is recommended.

When chromium speciation data become available, ATSDR will be available to review.

Signature: 🗇

Date: 11-22-00

Concurrence:

Date:

References

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

Strike AROA WTIAir3.wpd

Agency for Toxic Substances and Disease Registry Facsimile Transmission

EXPOSURE INVESTIGATIONS AND CONSULTATION BRANCH

TO: Raj Singhvi	FROM: Maurice West
FAX NO. (732) 321 - 6724 PHONE NO. (753) 321 - 6740 DATE: /2/7/00 NUMBER OF PAGES: 3	Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation Mail Stop E32 1600 Clifton Road Atlanta, Ga. 30333 FAX NO. (404) 639-0655 TEL NO. (404) 639-0616
a soil samples for school a walter guestins or com	gest - ARUH en air aken a Liverpool Elemantary - Ave. Pls call WI ony monts. 1.C. West

East Liverpool (WTI) OHD980613541 A180 Site Name: **CERCLIS#** CRS# **ROUTING:** M. West FILE -AUTHOR INFORMATION-User ID: JZW1 Date: November 28, 2000 John Wheeler **Time:** 15:30 Name: **Preparer:** DHAC/EICB -SITE/EVENT INFORMATION-East Liverpool (AKA Waste Technologies Industries. WTI) Site Name: CERCLIS #: OHD980613541 Cost Recovery #: A180 City: E. Liverpool Address: County: State: ОН Zip Code: _____ Congressional Region: 05 District: -SITE STATUS-Non-NPL NPL RCRA Non-Site Federal specific Emergency Response Remedial Removal Other: Strike Team -ACTIVITIES-__ Health Consult __ Site Visit __ Outgoing Call Incoming Call __ Public Meeting __ Conference Call __ Data Review Other Meeting __ Health Referral __ Info Provided __ Incoming Mail __ Worker Health __ Tech Assist Written Response __ Training Emerg Response __ T-Crit Removal __ Non T-Critical Removal OtherText: Consult Category: -REQUESTOR AFFILIATION-**Requestor:** Raj Singhvi **Affiliation:** US EPA/ERT Phone #1: (732) 321-6740 Phone #2: Fax (732) - 321-6724 Address: 2890 Woodbridge Avenue, Building 18 **Zip Code:** <u>08837-3679</u> Edison City: State: NJ

S	ite Nan	ne: East L	iverpool (W	ri) CERC	CLIS# OHD98061354	1 CRS# A180
	County	y:	Co	ongressional D	District:	
			-CONTAC	TS AND AFF	TILIATION-	
(1) (31)	_	Singhvi on Wilbur / DT		()		
13-OT	Y HLTH HER HR CITY	2-USCG 8-HOSPITAL 14-UNKNOWN 21-INTL 27-NAVY	3-OTHER FED 9-LAW ENFORE 15-DOD16-DOE 22-CITZ GROUP 28-AIR FORCE	4-STATE ENV 10-FIRE DEPT 17-NOAA 23-ELECT.OFF 29-DEF LOG A	11-POISON CTR 18-OTHR STATE 24-PRIV. CO	6-COUNTY HLT 12-PRIV CITZ 19-OTHR CNTY 25-NEWS MEDIA 31-ATSDR
Γ	-PROGRAM AREAS-					
	Health Assessment		Health St	udies	Tox Info-profile	Worker Health
	Petitio	on Assessment	Health Si	ırvellnc	Tox Info-Nonprofile	Admin
	Emerg	gency Response	Disease F	Registry	Subst-Spec Research	Other:
Γ	Health	Consultation	Exposure	Registry	Health Education	

NARRATIVE SUMMARY:

USEPA Emergency Response Team provided ATSDR data on soil and air samples collected for metals. The air samples were taken by EPA on November 14, 15, 16, and 17 at five different locations, East Liverpool Elementary School, water treatment facility, Lawrenceville, City Hall, and Walter Ave. The sampling at City Hall had to be discontinued and therefore results were not reported. The report is &ted 11/22/2000. Soil samples were collected from 6 different areas. Four samples were collected at the Liverpool Elementary School and two samples were collected on Walter Avenue. EPA requested ATSDR to evaluate the metal data for health concerns.

ACTION REQUIRED/RECOMMENDATIONS/INFO PROVIDED:

Conclusion:

None of the reported levels in either air or soil poses a public health concern from any route of exposure for any exposure duration. It is noted however that ATSDR considers chromium found at the site to be chromium III and not chromium VI. Studies are presently being conducted by EPA in Research Triangle Park to better characterize the chromium species found at the site. ATSDR understands that it will he consulted when the analysis becomes available.

In addition, the ATSDR Strike Team found it important that the peak levels of 11 of 16 metals found in air occurred on the same day (November 16) at the same location (water treatment facility). While these levels do not pose a health threat it suggests that better characterization of peak levels be obtained. It is unclear if this is a one time excursion or if the levels measured represent peak values.

Site Name: East Liverpool (WTI) CERCLIS# OHD980613541 CRS# A180

Recommendation:

- 1) Determine the source of air contaminants. The addition of meteorological data to the air data and sample locations would be useful.
- 2) If further sampling reveals continued "spikes" of air contamination determine the frequency and magnitude of those spikes.
- 3) Continue working with EPA at RTP on chromium speciation issues and share findings with ATSDR when available.

Signature:

Concurrence:_M.C.

Date: /2/7/00

Date: 12/7/00

cc:

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

WTI air soil.wpd

Agency for Toxic Substances and Disease Registry Facsimile Transmission

EXPOSURE INVESTIGATIONS AND CONSULTATION BRANCH

TO: Rat Singhvi	FROM Theresa McDomant
FAX NO. (732) 321 - 6729	Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation Mail Stop E32
PHONE NO. ()	1600 Clifton Road Atlanta, Ga. 30333
NUMBER OF PAGES: 3 (Not including this page)	FAX NO. (404) 639-0655 TEL NO. (404) 639-0616
COMMENTS: Flike team AROA for Soil delta Please let me Know if you have any	from WTI Sik. greations. Thanks
	Theresa

CERCLIS#:

CRS# A-180

Site Name: WTI Waste Technologies Industries

ROUTING: M. West, FILE -AUTHOR INFORMATION-Date: November 9, 2000 User ID: Tak9 Name: Theresa McDarmont Time: AM PM 1:46pm **Preparer:** DHAC -SITE/EVENT INFORMATION-**Site Name:** Waste Technologies Industries (WTI) **CERCLIS #: Cost Recovery #: Address:** City: East Liverpool Zip Code: **County:** State: OH Region: 01 **Congressional District:** -SITE STATUS-(1) X_Non-NPL __ RCRA __ Non-Site specific Federal NPL __ Remedial __ Removal (2)Emergency Response X Other: -ACTIVITIES __ Public Meeting X Health Consult Site Visit __ Outgoing call __ Incoming Call __ Health Referral __ Info Provided __ Conference Call __ Data Review __ Other Meeting __ Incoming Mail __ Written Response __ Worker Health 01 Tech Assist __ Training __ Emerg Response T-Crit Removal Non T-Critical Removal Other Text: Consult Category: -REQUESTOR AFFILIATION-Requestor: Raj Singhvi **Affiliation:** US EPA/ERT Fax: (732) - 321-6724 **Phone #l:** (732) 321-6740 Address: 2890 Woodbridge Avenue, Building 18 State: NJ **Zip Code:** 08837-3679 City: Edison **County: Congressional District:**

CERCLIS#: CRS# A-180 **Site Name:** WTI Waste Technologies Industries -CONTACTS AND AFFILIATION-(31) John Wheeler (1) Raj Singhvi_ (1) Caroline Previ (31) Hana Pohl_ 6-COUNTY HLT 2-USCG 3-OTHER FED 4-STATE ENV 5-STATE HLT 1-EPA 7-CITY HLTH 9-LAW ENFORE 10-FIRE DEPT 11-POISON CTR 12-PRIV CITZ 8-HOSPITAL 17-NOAA 18-OTHR STATE 19-OTHR CNTY 14-UNKNOWN 15-DOD16-DOE 13-OTHER 23-ELECT.OFF 24-PRIV. CO 25-NEWS MEDIA 22-CITZ GROUP 21-INTL 20-OTHR CITY 29-DEF LOG AGCY 30-NRC 31-ATSDR 28-AIR FORCE **27-NAVY** 26-ARMY -PROGRAM AREAS-__ Health Studies Worker Health __ Tox Ho-profile __ Health Assessment __ Tox Info-Nonprofile __ Petition Assessment __ Health Survellnc Admin __ Subst-Spec Research 01 Other (Tech __ Emergency Response __ Disease Registry Assist) Exposure Registry Health Education X Health Consultation **NARRATIVE SUMMARY:** USEPA Emergency Response Team provided ATSDR data on soil samples collected for metals, and dioxin/furrans. These samples were taken by EPA on October 26, 2000 in response to public health concern of emissions coming from a hazardous waste incinerator located in East Liverpool, Ohio. Soil samples were taken at the nearby (1000 feet) East Liverpool Elementary school, school play ground, and three other locations near school and upwind locations away from Waste Technologies Industries (WTI). EPA requested that ATSDR review the data and provide conclusions/recommendations on public health implications. EPA asked for specific recommendations regarding levels of dioxin, zinc and arsenic. ACTION REQUIRED/RECOMMENDATIONS/INFO PROVIDED: During the October 26, 2000, sampling event a total of 10 soil samples were taken and analyzed for metals and-dioxin. The level of arsenic in one of the samples (36.6mg/kg) did slightly exceed ATSDR's Chronic EMEG of 20 mg/kg for children, but was well below the adult chronic EMEG of 200 mg/kg. ATSDR found that all the metals in the sampling data including zinc and arsenic in the soil samples were not at levels of public health concern. Dioxins and furans were adjusted for 2378 TCDD equivalents and an overall TEQ value was provided, as well as, individual levels of dioxins. Levels of dioxin in soil were well below screening levels for children and adults, as were TEQ values. The levels of dioxin are not considered a public health concern.

Recommendations

None

Site Name: WTI Waste Technologies Industries

CERCLIS#:

CRS# A-180

	Suns	Mil In
Signature:	Minn	1

Date: 11-13-00

Concurrence:

Date:____

References

cc:

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

Strike AROA WTIsoil.wpd

ATSDR RECORD OF ACTIVITY CERCLIS# East Liverpool (WTI) OHD980613541 CRS# A180 Site Name: **ROUTING:** M. West -AUTHOR INFORMATION-User ID: dds9 Date: March 22, 2001 David S. Sutton, Ph.D. Time: Name: 9:00 AM Preparer: DHAC/EICB/CS -SITE/EVENT INFORMATION-Site Name: East Liverpool (AKA Waste Technologies Industries, WTI) CERCLIS #: OHD980613541 Cost Recovery #: 1250 St. George Address: City: East Liverpool County: Columbiana State: OHZip Code: 43920 Region: 05 **Congressional District:** 17 -SITE STATUS-**NPL** Non-NPL **RCRA** Non-Site specific Federal ✓ Other: **Emergency Response** Remedial Removal Strike Team -ACTIVITIES-Public Meeting _ Health Consult Incoming Call Site Visit Outgoing Call Health Referral _ Info Provided __Conference Call Other Meeting Data Review Written Response Training Incoming Mail Worker Health ✓ Tech Assist Emerg Response T-Crit Removal ___ Non T-Critical Removal Other Text: Consult Category: -REQUESTOR AFFILIATION-Requestor: Raj Singhvi Affiliation: US EPA/ERT Phone #1: (732)321-6740 Fax (732)321-6724 Phone #2: 2890 Woodbridge Avenue, Building 18 Address: Edison NJ 08837-3679 City: State: Zip Code: County: **Congressional District:**

-CONTACTS AND AFFILIATION-

Raj Singhvi Sharon Wilbur / DT l-EPA I-USCG 3-OTHER FED 4-STATE ENV 5-STATE HLT 6-COUNTY HLT 7-CITY HLTH 8-HOSPITAL 9-LAW ENFORE 10-FIRE DEPT 11-POISON CTR 12-PRIV CITZ 13-OTHER 14-UNKNOWN 15-DOD16-DOE 17-NOAA 18-OTHR STATE 19-OTHR CNTY 25-NEWS MEDIA 20-OTHR CITY 21-INTL 22-CITZ GROUP 23-ELECT.OFF 24-PRIV. CO 26-ARMY 27-NAVY 28-AIR FORCE 29-DEF LOG AGCY 30-NRC 31-ATSDR

	-PROGRAM AREAS-				
Health Assessment Health Studies Tox Info-profile Worker Health				Worker Health	
	Petition Assessment	Health Survellnc	Tox Info-Nonprofile	Admin	
	Emergency Response	Disease Registry	Subst-Spec Research	Other:	
	Health Consultation	Exposure Registry	Health Education		

Site Name: East Liverpool (WTI) CERCLIS# OHD980613541 CRS# A180

NARRATIVE SUMMARY:

USEPA Emergency Response Team (ERT) has conducted air and soil sampling in East Liverpool, Ohio in response to citizens concerns about emissions from the Waste Technologies Industries (WTI) hazardous waste incinerator. ERT has conducted 5 rounds of sampling beginning in October 2000. ERT has requested the Agency for Toxic Substances and Disease Registry (ATSDR) to evaluate these sampling results for public health implications. In separate ATSDR Record of Activities (AROAS), ATSDR has provided its health conclusions to sampling rounds 1, 2, 3, and 4. This AROA evaluates samples collected during sampling round 5.

Sampling round 5 consisted of ambient air samples collected at twelve locations and analyzed for metals, volatile organic compounds (VOCs), or particulates (PM_{lo}). At one location, a duplicate sample was collected: WTI 5D. The samples were collected by ERT on December 5 through December 10, 2000. The twelve sampling locations are listed in Table 1.

Sampling Locations in East Liverpool Community (Round 5)			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A CONTROL OF SERVICE O		
WTI 1	School Administration Building Roof		
WTI 2	Water Treatment Plant		
WTI 2a	Water Treatment Plant PM ₁₀		
WTI 4	City Hall Roof		
WTI 5	End of Walter Street		
WTI 5D	End of Walter Street Duplicate		
WTI 6	Port Authority Parking Area		
WTI 7	West End of Ohio Avenue		
WTI 8 Route 39E at Monument			
WTI 9	Route 39E at Entrance		
WTI 10	East End of S.H. Bell		
WTI 11	Cause Ave. at East End of S.H. Bell		

TABLE 1

Eleven sampling events were completed. Each sampling-event consisted of samples collected from 4 to 12 sampling locations (i.e., the number of sample locations used per sampling event varied) with 107 total samples collected and analyzed. Samples collected for metals were analyzed for 22 metals using the modified NIOSH Method 7300 (Elements, ICP). The metals consisted of aluminum, antimony, arsenic barium, beryllium, cadmium,

calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc. The collected samples were also analyzed for 46 VOCs using NIOSH Methods 1003, 1500, and 1501.

Site Name: East Liverpool (WTI) CERCLIS# OHD980613541 CRS# A180

ACTION REQUIRED/RECOMMENDATIONS/INFO PROVIDED:

VOCs were sampled for at WTI-1, WTI-2, WTI-5, and WTI-6. Compounds detected included benzene, carbon tetrachloride, toluene, xylene. Because of the low VOC levels detected, the measured concentrations were estimated and below ATSDR comparison values (i.e., of no public health concern), except for benzene. The estimated detections for benzene ranged from $0.64-2.2~\mu\text{g/m}^3$. The ATSDR comparison value for benzene is $0.1~\mu\text{g/m}^3$ for cancer (note, the method detection limit (MDL) for benzene during sampling round 5 was $2.9~\mu\text{g/m}^3$). Likewise, based on available medical, epidemiologic, and toxicologic studies, ATSDR do not expect that the benzene levels estimated in the community near the WTI facility to cause any adverse health effects [1].

Table 2 summarizes the measured air concentrations for metals during sampling round 5. Most of the metals detected during sampling round 5

TABLE 2: S	SUMMARY OF DETECTE	D AIR CONCENTRATIO	NS (METALS) AT WTI SITE
Aluminum	0.17 48	0.24 4.3	17
Antimony	0.0067 1.9	Not Detected	0
Arsenic	0.0067 1.9	0.03	1
Barium	0.017 4.8	0.017 0.028	4
Beryllium	0.0067 1.9	Not Detected	0
Cadmium	0.017 4.8		0
Calcium	0.34 96	0.38 9.2	29
Chromium	0.017 4.8	0.02 0.29	12
Cobalt	0.033 9.6	Not Detected	0
Copper	0.033 9.6	0.037 0.54	0 3
Iron	0.084 24	0.17 46	39
Lead	0.0067 1.9	0.0075 0.34	36
Magnesium	1.7 480	Not Detected	0
Manganese	0.017 4.8	0.02 8.9	64
Nickel	0.033 9.6	0.071	1
Potassium	6.7 1,900	Not Detected	0
Selenium	0.0067 1.9	0.0069 0.013	. 14
Silver	0.017 4.8	0.23	1
Sodium	1.7 480	2.1 7.6	. 3
Thallium	0.0067 1.9	Not Detected	0
Vanadium	0.033 9.6	0.037	1
Zinc	0.033 9.6	0.037 0.86	43

are within levels typically found in air for urban areas across the United States; however, it is still unclear what are the true probable sources for these detected metals. None of the. detected levels for metals were at levels of public health concern, except for manganese. The detected manganese levels during sampling round 5 were above ATSDR's EMEG, of $0.04 \, \mu g/m^3$ for chronic exposures to manganese in air. Levels of manganese detected in the East Liverpool Community

ranged from ND - 8.9 μ g/m³ at all locations. The highest manganese level was detected at Location WTI 5. (i.e., 8.9 μ g/m³). Location WTI

¹ An environmental release tidbit, the predominant source or origin of most benzene in urban air is from cars and trucks; likewise, the benzene levels estimated in the community near the WTI facility during sampling round 5 are very comparable to levels found in air for most typical urban areas across the United States [1].

Site Name: East Liverpool (WTI) CERCLIS# OHD980613541 CRS# A180

5 is along the Ohio River directly east of one of the operations for the S.H. Bell Company, which could be a probable source. As stated in the previous AROAs discussing sampling rounds 1, 2, 3, and 4 results, ATSDR does not expect these detected manganese levels to cause any adverse health effects since the detected levels are far lower than the reported manganese levels of $140~\mu g/m^3$ (LOAEL) that may cause mild neurological effects, as documented in occupational studies [2].

Also as mentioned in the AROA discussing sampling round 4 results, ATSDR considers chromium detected in the community near the WTI facility to be chromium III and not chromium VI. Studies are presently being conducted by USEPA in Research Triangle Park (RTP) to better characterize the chromium species detected in the East Liverpool Community. ATSDR understands that it will be consulted when the analyses become available.

Recommendations

- 1) Continue to determine the source of air contaminants.
- Continue working with USEPA at RTP on chromium speciation issues and share findings with ATSDR when available.
- Continue to monitor levels of metals and VOCs periodically since any increased levels could raise health concern.

Signature: <u>David S. Sutton, Ph.D.</u> Date: March 22, 2001

David S. Sutton, Ph.D. Environmental Engineer

Concurrence: Brian Kaplan _ Date: March 22, 2001

Brian Kaplan

Environmental Health Scientist

Site Name: East Liverpool (WTI) CERCLIS# OHD980613541 CRS# A180

References

- 1. Agency for Toxic Substances and Disease Registry. 1997. Toxicological Profile for Benzene, US DHHS. Public Health Service. Atlanta, GA.
- 2. Agency for Toxic Substances and Disease Registry. 2000. Toxicological Profile for Manganese, US DHHS. Public Health Service. Atlanta, GA.

cc:

Maurice West, Deputy Branch Chief, EICB ATSDR Regional Representative

AROA-5thRD-Final-WTI.wpd